
/F

/ , /

/

H DL-TM-88-13
February 1989

Implementing a Definite Clause Grammar for
Parsing Surface Syntax

by John 0. Gurney, Jr.
Kimberly C. Claffy
Jason H. Elbaum

H7 A

U.S. Army Laboratory Command
Harry Diamond Laboratories

Adelphi, MD 20783-1197

Approved for public release, distribution unlimited

k q-3

The findings in this report are not to be construed as an official Depart-
ment of the Army position unless so designated by other authorized
documents.

Citation of manufacturers' or trade names does not constitute an offi-
cial endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the
originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF T;S PA'E

Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

la REPORT SECURITY CLASS(F.CATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONj AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release: distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

HDL-TM-88-13

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Harr DimondLabratoies(if

applicable)

HarryD~amnd Lboraorie SLCHD-TA-AS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)

2800 Powder Mill Road
Adeiphi, MD 20783-1197

Ba NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMEN' IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

U.S. Army Laboratory Command AMSLC

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WOfK UNIT
2800 Powder Mill Road ELEMENT NO NO. NO. ACCESSIUN NO

Adelphi, MD 20783-1147 P611102.H44 AH44 r

11 TITLE (Include Security Classification)

Implementing a Definite Clause Grammar for Parsing Surface Syntax

12 PERSONAL AUTHOR(S)

John 0. Gurney, Jr., Kimberly C. Claffy, and Jason H. Elbaum
13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final FROM Oct 86 TO Sept 87 February 1989 83
16. SUPPLEMENTARY NOTATION

HDL project: AE1754, AMS code: 611102.H440011

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Definite clause grammar, parsing, syntax, natural language, computational
09 02 linguistics

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

/ With this report we aim to serve several ends: We acquaint interested readers with some simple techniques for proc-
essing natural language (English) sentences. We present basic ideas and document our implementation of a software en-
vironment for building parsers that use these techniques. We illustrate the use of the implementation by recounting the
development of an elementary (or naive) parser in the form of a definite clause grammar. We discuss choices we have
made and some of the issues considered in making these choices. We also mention some of the possil~l extensions to
the grammar.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

OUNCLASSIFIED/UNLIMITED [_ SAME AS RPT C DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

John 0 Gurney. Jr (202) 394-4300 SLCHD-TA-AS

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Contents

1 Introduction 1

2 What is a Definite Clause Grammar? 2

3 Implementation 5

3.1 Prolog..5

3.2 Left Recursion.. 7

3.3 The Structure Argument 9

3.4 Terminal Rules. 1

3.5 Interfaces. 1

4 Building a Grammar 12

4.1 Governing Considerations 12

4.2 General Constraints. 13

4.2.1 Number Agreement 14

4.2.2 Pronoun Case 15

4.2.3 Transitivity 6

4.3 Phrase Structures. 17

4.3.1 Noun Phrases 17

4.3.2 Higher Order Structure 19

4.3.3 Subordinate Adverb Clause. 19

4.3.4 Sentence Prefixes. 21

4.3.5 Verb Tenses. 22

Mi

5 Ground Not Covered 27

6 Concluding Comments 30

Literature Cited 33

Distribution 83

Appendices

A Simple Grammars 35

B PROSENT 39

C PROTREE 43

D The Grammar 55

iv

List of Figures

1 Two parse trees 3

2 Prolog window showing sentence queries 6

3 Infinite loop from using left recursive grammar 8

4 Bindings for structure arguments returned by Prolog 9

5 Mouse sensitive tree 11

6 Noun phrases and higher structure 18

7 Infinitive verb phrase as subject 20

8 Subordinate adverb clause 21

9 Leading adverb phrase 23

10 Tensed verb 26

List of Tables

1 Verb Tenses 23

~/

I!

V

1 Introduction

With this report we aim to serve several ends: We acquaint interested read-

ers with some simple techniques for processing natural language (English)

sentences. We present basic ideas and document our implementation of a

software environment for building parsers that use these techniques. We

illustrate the use of the implementation by recounting the development of

an elementary (or naive) parser in the form of a definite clause grammar.

We discuss choices we have made and some of the issues considered in mak-

ing these choices. We also mention some of the possible extensions to the

grammar.

The grammar we present amounts to a modularized syntactic parser

which can produce parse trees for some of the well-known forms of English

sentence. In choosing rules for the grammar, we have concentrated on cer-

tain noun phrases, verb tenses, and the subordinate adverb clause, and a few

other constructions.* All sentences that we consider are declaratives. These

selections reflect our interest in certain problems involving recovering and

regimenting information from extended discourses.

A possible application of our ongoing studies would be autonomous proc-

essing of streams of natural language (or other richly formatted) messages

(as well as briefing materials and texts) about events and situations. This

processing would employ modules based on pragmatic and semantic knowl-

edge. The grammar we present here does not employ pragmatic or semantic

knowledge and, therefore, amounts to a syntactic module. It delivers syn-

tactic parse trees intended as input to, or material for, the other modules.

The kinds of message and text we have in mind convey information about

where objects are located in time and space, as well as information about

the course of events in time. And this information is largely and essentially

relational (e.g., it says that A happened before B; that C is in front of D).

Natural language handles these kinds of relations through various syntactic

devices such as verb tenses, subordinate clauses, and prepositional phrases.

Under current study are two questions: What kinds of parse trees should

the grammar deliver? What forms should the next (or other) stages (or

modules) of processing take? For these studies, we have found that definite

clause grammar is a useful research tool.

*Almost all of the syntactic constructions that this grammar handles were taken from a student grammar
handbook (see Warriner [8]).

2 What is a Definite Clause Grammar?

A definite clause is a horn clause in any of the standard logical calcali. An
example in the notation of the first-order predicate calculus is

(Vx)(man(z) A unmarried(x)) =* bachelor(x).

An example from the propositional calculus is

PVQAR=> T.

And an example from the computer language Prolog is

bachelor(X) :-man(X), unmarried(X).

We can generalize from these examples, stating that a definite clause in
logical notation is any clause with only one term on the right-hand side of

the conditional arrow =>. In the notation of Prolog there must be only one
term left of the turnstile :-. This definition allows degenerate cases where
there are no terms on the antecedent side of the arrow or turnstile. These
special definite clauses are unit clauses like

unmarried(John).

In what follows we will explain how rules of English grammar can be encoded
into Prolog using nothing but definite clauses.

Instructive discussions of definite clause grammars (DCG's) appear in

Pereira and Warren [5], Clocksin and Mellish [1], and Winograd [9]. Through-
out the remainder of this section we review some of the well-known features
of these grammars.

Although DCG's have been used for various jobs in computational lin-
guistics, perhaps the most obvious use is to validate that a natural language
sentence is grammatically acceptable and then display the syntactic struc-
ture of that sentence. As examples of what a DCG can do, figure 1 displays,

in graphical form, syntactic parse trees for two English sentences.

A set of grammar rules strong enough to generate these sentences could

be the following (see Winograd [9], p. 93):

2

.,n. ,,,.mn~n mm uumnnnin nn min m I I I mI I I II II

I MLI I M

Parse Tree

Parse Tree

Figure 1: Two parse trees.

3

S -> NP, VP
NP -> Determiner, NP
NP-> Noun
NP -> Adjective, NP
NP -> NP, PP
VP-> Verb

VP -> Verb, NP
VP -> VP, PP
PP -> Preposition, NP

where

S means sentence,
NP means noun phrase,

PP means prepositional phrase, and
VP means verb phrase.

The rule S -> NP, VP can be read as One form of sentence consists of a

noun phrase followed by a verb phrase. Alternatively, and more pertinent to

definite clause grammar, the rule can be read as If a sequence consists of a
noun phrase followed by a verb phrase it is a sentence.* Thus, the rule can
be rewritten as a formula in predicate logic:

(Vz)(Vy)(Vz)(noun phrase(x) A verb.phrase(y) A concat(z,y, z)) ='

(sentence(z)).

where concat(z,y,z) means that the sequence of words, z, is the same as
sequence z followed by sequence y. From this form the rule can be read-

ily translated into the formal language of a logical theorem prover such as
Prolog. We would then have an implementation of the DCG in Prolog (or

whatever other theorem-proving language). Given such an implementation,
we could apply the set of grammar rules to any candidate for sentence by

asking the logic system to prove that the candidate is a sentence. In the

present case, we might ask the logic system to prove

(3z)(noun-phrase([the, black, stallion]) A verb-phrase(fate, an, apple])

Aconcat([the, black, stallion], [ate, an, apple], z)).

*We make no claim that this grammar is correct for English. In fact, counterexamples to the first rule
come easily to mind.

4

Two features of DCG's make them attractive for our project. First, the
coded versions of the rules of the grammar are perspicuous. In Prolog, the
rule for sentences (above) looks like the following horn clause:

sentence (Z) :- concat(X,Y,Z), noun-phrase(X),
verb-phrase(Y).

The Prolog query looks like

?- sentence ([the,black,stallion,ate,an,apple]).

Second, the logic system takes care of some of the procedural, algorith-
mic, and control problems. These systems validate the sentence query by
backchaining and unification (see Clocksin and Melish (1], and Pereira and
Warren [5]). With these methods, we can quickly develop and modify gram-
matical parsers simply by adding, retracting, and changing grammar rules
in a file (which will be compiled as a Prolog database).

3 Implementation

3.1 Prolog

All of our Prolog implementations used a version of DECsystem-10 Prolog
running on a Symbolics 3675 Lisp machine (see User's Guide to Symbolics
Prolog [7]). This is the Prolog software offered by Symbolics, Inc. This
environment supports calling Lisp programs from Prolog as well as calling
Prolog programs from Lisp.

This version of Prolog also supports writing rules in a standard grammar-
rule notation. The Prolog rule for sentences (above) would appear in this
notation as

sentence -> noun-phrase, verb-phrase.

This notation is superior to the standard horn-clause notation for two rea-
sons. The rules are now even more readable. For simple grammars, the rules

5

look very much like the standard Backus normal form used by programming
language designers as well as some linguists (see Winograd [9], chapter 3).
Also, hidden from view is the fact that the underlying form of these rules
dispenses with the concat predicate in favor of difference lists (see Sterling
and Shapiro [61).

Using concat to ensure that the noun phrase and the verb phrase are
contiguous (with the latter following the former) is inefficient. Concat can

cause much backtracking, which is avoidable with difference lists. However,
incorporating difference lists into horn-clause style grammar rules is tedious,
resulting in rules that look cluttered. Since the requirements for difference-
list variables are simply stated, these variables are generated by an algorithm
that translates the grammar notation into the horn-clause notation. The
horn-clause notation for the above rule turns out to look like

sentence(S1,S2) :- nounphrase(S1,S3), verb_phrase(S3,S2).

The Prolog (grammar notation) version of the grammar on page 5 appears
in section A.1 (see app. A). This grammar will validate, as grammatical, the
two sentences given above in figure 1 (see fig. 2). It will also fail to prove the
sentence

the stallion black ate an apple.

We may take this as meaning that the sentence is ungrammatical. In general,

?- sentence ([the , black , stallion , ate , an , apple] , L]).
yes
?- sentence ([the , element , to , my , right , moved] ,[]).
yes
?-

Prolog Listener 4

Figure 2: Prolog window showing sentence queries.

6

we cannot take not proven to mean ungrammatical, for the obvious reason
that our DCG may not have complete coverage of the actual grammar of
English. Our simple grammar cannot prove

the black stallion quickly ate an apple

because it contains no rule for adverbs. On the other hand, it can prove

the black stallion beckoned apple

which is not grammatical. Our DCG would require extensive modifications
and additions before we could use the provability of a sentence to be a nec-
essary and sufficient condition for its grammaticality. A final grammar in-
cluding all modifications and restrictions can be thought of as a distant goal
toward which we work. Short of this goal, we would produce special-purpose
grammars which may be interesting and useful in certain applications. Some
of the necessary enhancements to the DCG are discussed in section 4, on
building a grammar.

Two problems emerge because our grammar is implemented in Prolog:
the problem of left recursion and the problem of building parse tree struc-
tures.

3.2 Left Recursion

The grammar in section A.1 is left recursive. For example, in the rule

noun-phrase -> noun-phrase, prepositional-phrase.

the head predicate occurs as the first clause on the right side. During
backchaining, the system could enter an infinite loop. In fact, the query

?- sentence ([the,black,ate,an,apple],[]).

will cause such a loop (see fig. 3). Since black is not a noun in the dictionary
for this grammar, the above noun-phrace rule will call itself recursively. In

7

?-sentence ([the , black , ate , an , apple] ,[]).
Error: The control stack overflowed.

Rebinding the following specials; use Show Standard Value Warnings f
or details:

REROTRBLE

(:PROLOG-PREOICRTE NOUN-PHRASE 2):
s-R, m: Continue vith a larger stack.
s-B, 'z: Return to Prolog Top Level in Prolog Listener 4
-

Prolo9 Listener 4

Figure 3: Infinite loop from using left recursive grammar.

order to prevent these loops, one technique has been to alter the grammar,
for example, by naming different types of noun phrases (noun-phrase_2,
noun-phrase_3, etc.). We will then have new rules such as

noun-phrase -> noun-phrase_2.,

noun-phrase_2 -> noun.,

and so on. The revised grammar is in section A.2.

For this grammar, the query

?- sentence ([the,black,ate,an,apple],[]).

returns no. This grammar seems to look less clear than the former version.
We have, in effect, used a trick to avoid a procedural control problem. Or to
put it more positively, we have used a declarative representation of possible
grammatical structures, and these structures can only be trees (graphs with
loops will not exist). Since we may think that the syntactic structure of
a sentence can only be some tree or other, perhaps these new nonterminal
nodes, noun-phrase_2 and noun-phrase_3, really should belong in the
correct or final grammar for English.

8

3.3 The Structure Argument

The grammars in sections A.1 and A.2 are properly called recognizers be-
cause they only perform a test. They do not return any information on the
structure of a sentence. Again, there is a fairly standard way to change a
DCG recognizer into a DCG parser. We add argument places to the vari-
ous phrase-structure predicates and rewrite the grammar rules incorporating
structural variables which must be bound in order for a proof to succeed. In
this way, the sentence rule becomes

sentence(s(NPhr,VPhr)) -> noun-phrase (NPhr),
verb-phrase (VPhr).

The new grammar appears in section A.3.

Now successful sentence queries will return a representation of the parse
tree in list form rather than simply yes. This is because Prolog always returns

bindings for all variables that appear in the Prolog query. In figure 4, the
queries must now include a new variable (for example, S) in the argument
list for the predicate sentence. The binding returned for S is the desired

syntactic parse tree (in list form). The parse trees displayed in figure 1 were
generated by this grammar.

These structures are isomorphic with the clauses on the right-hand side
of the rule. For example, in the first rule, the structure argument, s(NPhr,

?- sentence (S , [the , black , stallion , ate , an , apple] , [1).
S = (a (np (det the) (np2 (adj black) (np2 (n stallion)))) (vP (v at
e) (np (dot an) (np2 (n apple)))))
yes
?- sentence (S , [the , element , to , my , right , moved] ,[]).
S = (a (np (dot the) (np2 (np3 (n element)) (pp (prep to) (np (dot m
y) (np2 (n right)))))) (vp (v moved)))
yes
2-

Prolog Listener 4

Figure 4: Bindings for structure arguments returned by Prolog.

9

Vphr), is an image of the right-hand side, noun-phrase (Nphr), verb-
phrase (Vphr). This fact invites the possibility of writing an algorithm to
generate these new structure arguments. This could be accomplished in the
manner that the variables for difference lists get created and inserted into
the underlying horn clause notation. We have experimented with such an
algorithm and think it would be feasible. However, we do not include the
implementation in this report.

For our present purposes we have a good reason for not automating the
the specification of structures in this way. The structures one would like the
theorem prover to return may not be isomorphic images of the surface phrase
structure. Perhaps we would like the parse tree to display root forms of verbs
or to reorder phrases. In section 4 we will present rules that perform these
kinds of transformation. These transforms are easy to implement in Prolog
and this ranks as what is perhaps the most important attribute of DCG's.

3.4 Terminal Rules

The grammar in section A.3 also deals with its dictionary in a different way.
Words (terminal nodes) are now specified by defining various predicates like
is-determiner and is-noun. And a set of terminal rules such as

noun -> {is-noun}.

is now responsible for making these dictionary entries accessible to the higher
level rules.* Dictionaries now become somewhat easier to write and maintain.

3.5 Interfaces

We have created two modules to make using and building DCG's easier.
These are PROSENT and PROTREE. One uses PROSENT to enter sen-
tences which will be parsed by a grammar. PROTREE produces the graph-
ical display of a parse tree. The Lisp codes for each module appear in ap-
pendix B and appendix C along with short explanations of how they work.

*Use of braces on the right side of a Prolog grammar rule turns off the automatic creation of a difference
list. So things wrapped in braces are not taken to be constituents of the sentence or phrase.

10

If the two modules have been loaded into the Lisp environment, entering
(sentsys) from a Lisp Listener window will cause a window to be created for
entering sentences, as in figure 5.

To the prompt Enter the sentence to parse ('Q' exits): appearing in that
window, one can then enter a sentence as a sequence of words. Parentheses,

quotes, periods, and other punctuation are not necessary and must not be
used, unless the particular grammar rules in use recognize punctuation. The
system then generates all possible parses of the sentence (as defined by the
grammar), storing them in a global list. Finally, sentsys calls the function
draw-parse-tree.

Sentence Entry

The man in the cape beckoned Mary

I~xit Tree Displaym

[r] -IPrevious Parsen

Parse Tree

Figure 5: Mouse sensitive tree.

11

Draw-parse-tree creates a new window labeled Parse Tree, in which it
draws the parse trees for the sentence. All t 'al nodes, which usually
represent actual words of the sentence, are dropped from their original po-
sitions in the tree to the bottom of the window, where they are all at the
same horizontal level. This allows the words to be read directly across the
bottom of the tree.

Each node of this graphical representation of the tree is sensitive to the
mouse arrow, as shown in figure 5. With the mouse arrow over a node,
clicking the right mouse button displays a menu with four options: Ezamine
Node, Nezt Parse, Previous Parse, and Ezit Tree Display. The first option
opens a window which could be used to display further information about
the node. This feature is not yet implemented. The second and third options
are useful when more than one parse was generated by the grammar. The
last option returns control to the sentence entry window.

4 Building a Grammar

4.1 Governing Considerations

As mentioned in the introduction, we are interested in parsers that are sen-
sitive to the surface syntax of sentences. Our first implementation will look
like an enhanced form of the tiny grammar in section A.3, and some of the
enhancements will look like explicit statements that capture some of the
well-known facts about English grammar. There are three general sorts of
reason for proceeding in this way.

First, many of these rules of grammar are valid in the sense that they
work. This means they more or less accurately describe the forms of actual
speech and writing. People don't say things like

ate stallion apple the black

nor do they often say things like

these black stallion ate an apples.

Insofar as we can rely on adherence to correct grammar, we can use its
rules to parse sentences. This means that we can significantly constrain the

12

rules to parse sentences. This means that we can significantly constrain the
possible interpretations of a sentence. In fact, without relying on grammar

in some way, it may be impossible to process a message in the form of a
sentence.*

A reason for beginning with a syntactic parse is that its tree can be useful
to the next (pragmatic/semantic) stage of processing. This second stage will

generate some sort of logical form for the sentence about the stallion and
the apple. Among other things, the fact that it is the stallion that is black
and not the apple would be represented in this logical form. The parse trees

generated by our rules of grammar advance the route to logical form by
placing the modifiers of the noun off neighboring NP branches of the tree.

Third, in much of message and utterance understanding, the surface forms

of a sentence carry special information about the speaker's (or sender's)

meaning. t In our present example, use of the words the black stallion would

normally convey the presupposition that a particular stallion is already in
range (perhaps known to both speaker and hearer). By contrast, the words

the only black stallion in existence do not convey this presupposition. How-
ever, some logicians would translate sentences using either choice of words

into the same logical form; perhaps something like

(3x)(stallion(x) A black(x) A ate..anapple(x)A

(Vy)(stallion(y) =* x = y)).

Parsing rules that translate surface forms directly into this kind of logical

form can obscure important distinctions.

4.2 General Constraints

The above considerations, especially the first (that the rules of grammar cap-

ture actual language use), will justify a fairly straightforward implementation

of rules about number agreement, case, and person, as well as transitivity of

verbs.

*See the comments in section 5, Ground not Covered, regarding processing bad grammar. Neither humans
nor machines could process sentences without having internalized some kind of grammar. This means that
even cases of bad grammar may really be cases of nonstandard grammar. If the sentence can be processed,
then most likely there is some grammar into which the sentence fits.

tThe surface form is just the literal appearance of a sentence as distinguished from any form that may

result from processing the sentence. For example, John hit Mary and Mary was hit by John have different
surface forms, although the two sentences probably have the same logical form.

13

4.2.1 Number Agreement

Verbs and their subjects, as well as most nouns and their determiners, must
agree in number (also known as plurality). They must both be either singular
or plural (the only two grammaticalized quantities in English). In a DCG,
an obvious way to proceed is to first change the sentence rule

sentence(s(Nphr,Vphr) -> noun.phrase(Nphr),
verb-phrase(Vphr).

to a rule with new arguments:

sentence(s(Nphr,Vphr)) -> noun-phrase(Nphr,Number),

verb-phrase(Vphr,Number).

Now only noun phrases and verb phrases with their Number arguments uni-
fied to the same value will satisfy the sentence rule. The sentence predicate

needs no Number argument, because the concept of plurality does not apply
to sentences. Of course, these values (for the variable Number) must be in-
herited ultimately from the Prolog unit clauses that make up the dictionary.
So a full implementation of number agreement also requires modifications to
all noun-phrase rules and verb- phrase rules as well as certain dictionary

entries. Examples of some of what is needed are

noun-phrase(np(Det,Nphr2,Number)) ->

determiner(Det,Number), noun-phrase_2 (Nphr2,Number).

verb-phrase(vp(V),Number) -> verb(V,Number).

verb(v(V),Number) -> [V], {isverb(V,Number)}.

is-determiner(a, singular).

is-noun(stallions, plural).

is.verb(ate, singular).

is.verb(ate, plural).

14

These kinds of change take care of most (but not all) of the constraints on
number agreement among determiners, nouns, and verbs.

4.2.2 Pronoun Case

In English, case is grammaticalized only for pronouns, and only for three
cases: nominative, objective, and possessive. The nominative case is used
for two roles of the noun: subject of a sentence (or other finite clause) and
predicate nominative. Examples are

I ate an apple

it was L

The objective case is used for other roles such as direct object and indirect
object.

Just as for number agreement, case can be handled by adding a new
argument to certain predicates. However, this new case argument works to
guarantee proper satisfaction of a clause based on position in the sentence
rather than on an agreement between two parts of a sentence (as for number
agreement). *

The rule for sentences becomes

sentence(s(Nphr,Vphr)) ->
noun-phrase(Nphr,Number,nominative),
verbphrase(Vphr,Number).

The prepositional phrase rule becomes

prepositional-phrase(prphr(Prep,Nphr)) -> prepo-
sition(Prep), noun-phrase(Nphr,Number,objective).

Here we want constants rather than variables in the new argument positions.
Again, the full implementation requires changing all the rules for noun phrase
as well as some dictionary entries:

*In out DCG, role restrictions translate into position descriptions.

15

noun-phrase(np(Det,Nphr2),Number,Case))

determiner(Det ,N umber),

noun-phrase-2(Nphr2 ,Number,Case).

noun(n(N),Nurnber,Case) -> [N], {isnoun(N,Number,Case)}.

is-noun(I,singular,nominative).

and so on.

4.2.3 Transitivity

Transitive verbs take direct objects; bitransitive verbs take both direct and
indirect objects; and intransitive verbs must not have an object at all. Verb-
phrase rules that implement these restrictions could be written as

verb ..phrase(vp(V,Nphr 1) ,Numberl) -

verb (V,Numb erl ,transitive),
noun..phrase(Nphr,Number2,objective).

verb. phrase(vp(V,Nphrl ,Nphr2) ,Numb erl)

verb (V,Numb erl ,bitransitive),
noun-phrase(Nphrl ,Number2 ,objective),
noun..phrase(Nphr2 ,Number3,objective).

verb -phrase (vp(V) ,Numb er) -> verb (V,Numb er,int ransitive).

In the above rule for bitransitive verbs, we must use three different Number
variables, Numberi, Number2, and Number3. The reason is that only
the plurality of the verb determines the plurality of the parent verb phrase,
Numberi. The pluralities of the direct object and indirect object are not
relevant; nor must their Number arguments be required to both instantiate
to either singular or plural. To see this consider the two sentences

the man in the cape gave Mary the flowers

the men at the shore gave Mary a fish.

16

This completes our discussion of methods for implementing some of the
general constraints of grammar. The remaining constraint, person, will be
treated as part of the discussion of verbs.

4.3 Phrase Structures

Appendix D contains a collection of rules that incorporate all of the features
urged so far. These rules also implement several, more elaborate forms of
sentence. We believe that most of these rules can be understood directly by
reading the listings in appendix D. Below we take up selected rules which
may raise issues of particular interest.

4.3.1 Noun Phrases

The noun-phrase rules enforce distinctions among types of nouns. They
provide separate treatment for pronouns (such as I, they, and he), common
nouns (such as river, stallion, and intelligence), and proper nouns (such as
Mary, France, and Route 1). Proper nouns and pronouns cannot ordinarily
take adjectival modifiers or determiners. Equally important, these two kinds
of noun function differently from common nouns in discourse. They can pick
out or point to things without describing them. Common nouns, however,
often provide information on classification and may be thought of as doing
the work of adjectives. *

These facts and other related points become very important during the
next (pragmatic/semantic) stage of processing which will operate on the
parse tree. Hence, the parse tree must preserve these distinctions and mark
the nodes accordingly, as shown in figure 6. t

Another type of noun phrase is the gerund phrase (see the third noun-
phrase rule). Some rules for gerunds appear in section D.7. These rules can
be used to parse sentences such as

crossing the river was dangerous

*Common nouns act like adjectives when used for describing something. When used for referring to
something, their role changes. See Keith S. Donnellan [3].

tBeginning with figure 6, the parse trees are all generated by the grammar in appendix D. These trees
contain nodes and configurations which have not yet been explained but will be in the sequel.

17

Sentence Entry

The black stallion in the rield worried Mary

Parse Tree

Figure 6: Noun phrases and higher structure.

and

his working here made everyone happy.

Gerunds are of some interest in the study of discourse about time and events.
There is a very popular semantic theory of events (see Davidson [2]) which
would translate (at some stage of processing) all action verbs like went, win,
and beckon into nouns referring to events. This kind of translation can also
be attempted at the level of surface structure, as in going from

Jack fell down the hill

18

to

Jack's falling was down the hill.

We therefore include gerunds for possible attention in the future.

Generally, common nouns can be modified by adjectives and determiners
preceding and certain phrases, such as prepositional phrases, following. The
rules for noun-complement in section D.8 could be expanded to cover more
cases of the latter.

4.3.2 Higher Order Structure

The rules in section D.1 add new sentence parts to the grammar. The parse
trees generated by these rules now display subjects, predicates, and inde-

pendent clauses as in figure 6. And the noun phrases, verb phrases, and

other phrases have nodes for a head, modifiers, and complements. One good
reason for adding these parts is that the parse trees will now be easier to

process in the next stage. A sentence may contain more than one noun and
more than one verb. However, there is only one main verb and one main

noun (barring conjunctions). The more structured tree makes finding the
main parts easier.

In addition, the added structure makes writing good grammars easier.

For example, the subject of a sentence need not be a noun phrase. Figure 7
illustrates an infinitive verb phrase as subject. The tree also explicitly marks
this fact at the node INFVP.

4.3.3 Subordinate Adverb Clause

Other than the verb tenses (which we will discuss in sect. 4.3.5), perhaps the

most important grammatical device for expressing temporal relations is the
subordinate adverb clause. Our rule for this kind of subordinate clause is

(see also sect. D.4)

subord-adv-clause(sadvcls(Subconj, Indcls))

subordconj(Subconj),
independent clause(Indcls).

19

Sentence Entry

To cross the river Quickly was not exactly easy

MN EMN

Parse Tree

Figure 7: Infinitive verb phrase as subject.

This rule requires a new kind of dictionary entry for subordinating conjunc-
tions, such as before, after, and during (see sect. D.12). It also makes use of
the previously implemented top level structure for sentences, the indepen-
dent clause. This choice means that our grammar will, in effect, accept any
declarative sentence as the main part of a subordinate adverb clause. The
grammar will not rule out the following, incoherent, sentence candidate,

Ifed the horses after you will buy the oats,

because it does not enforce any tense agreement between main clause and
subordinate clause. It is arguable that mistakes in tense agreement are prob-

20

lems for semantics and not for syntax. In our scheme, other stages of proc-
essing will be responsible for ordering events in time.

We incorporate the subordinate adverb clause into the grammar by defin-
ing a new type of sentence and a new type of independent clause (see sect.
D.1). Figure 8 shows one example of the kind of parse tree generated.

Sentence Entry

Mary quickly worked before we ate the apples

N

Hi

HI

Perse Tree

Figure 8: Subordinate adverb clause.

4.3.4 Sentence Prefixes

Now the second rule for independent clauses (sect. D.1),

21

independent-clause(indcls(Subj,
pred(mods(rtshift(Advphr)),Vphr))) ->

adverb phrase(Advphr),
subject(Subj, Number, Person),
predicate(Vphr, Number, Person).

permits use of an adverb phrase preceding the subject of a sentence, as in

before we crossed the river, the men worked near
Route 1.

The parse tree appears in figure 9.

The structure argument in the above rule has been given special treat-
ment in order to both facilitate the other stages of processing and preserve
information about the original surface structure. This argument,

indcls(Subj,pred(mods(rtshift(Advphr)),Vphr))

is not isomorphic with the sequence of clauses on the right-hand side of the
rule. The position of the adverb phrase has been moved to immediately
precede the predicate, as is apparent in figure 9. This is necessary in order
that the algorithms used in the next stage will be able to detect that the
adverb phrase modifies the verb in the predicate and not the subject. Also,
an extra node, called RTSHIFT, has been added to the tree. This signals
the fact that the adverb phrase descending from this node has been moved
inward. By these means, the grammar delivers a parse tree which is both
easy to handle and full of information. *

4.3.5 Verb Tenses

The six tenses of the English verbs are past, present, future, and the perfect
forms of each of these. Table 1 shows the tenses for the irregular verb go.
Any system that will recover temporal information from discourse or text
must parse the tenses correctly. Fortunately, a portion of the problem of

*This is just one example of the use of the structure argument in transforming surface structure into
something more useful. Other examples will be presented in the section on verbs and in the later discussion
of caveats and possible modifications to our collection of rules.

22

Sentence Entry

Before we crossed the river the men worked near Routel

Parse Tree

Figure 9: Leading adverb phrase.

Table 1: Verb Tenses

person past past perf pres pres perf future future perf

I went had gone go have gone will go will have gone
you went had gone go have gone will go will have gone
he went had gone goes has gone will go will have gone
they went had gone go have gone will go will have gone

23

tenses is fairly well bounded. Each tense for all action verbs uses the same
auxiliary verbs (had for past perfect, etc.). And, except for the third person
singular, all action verbs use the same conjugations for each tense: infinitive
for present and future; past for past; and past participle for present perfect
and future perfect. The only anomaly occurs for the third person singular
form, which often requires a special conjugation for present tense and uses
has in place of have for present perfect tense.

Our foundation for the higher level rules for verb tenses is the set of dic-
tionary entries for action verbs (see sect. D.9). Here, each verb is entered
with the predicate averb, which has six arguments. The pattern of argu-
ments is

averb(Inflnitive,Past ,SingThird,PresPart,PastPart,Transitivity)

and the entry for the verb go is

averb(go,went,goes,going,gone,intransitive).

The rules for tenses in section D.9 access whichever of these six arguments
is appropriate.

In all, there would be 42 rules for verb phrases covering the action verbs
alone. One arrives at this number of rules through fairly strict adherence to
declarative programming and a liberal interpretation of all the possibilities
for combinations of main verbs, adverbs, temporal auxiliaries, and the special
problem of the third person singular subject. We will take combinations of
adverbs first.

No matter which tense we choose, we can think of a proper use of an
adverb immediately preceding the kernal verb phrase. Cases include

, iuickly went home

and

they easily will have finished the ezamination.

24

We save some redundancy in the writing of rules by making the first verb-
phrase rule recursive (though not left recursive!):

verb-phrase(vp (Vphr,mods(Adv)),
Number,Person,Type) ->

adverb -phrase(Adv),
verb -phrase_2(Vphr,Number,Person,Type).

Now we need only permute the legal combinations with adverbs between a
temporal auxiliary and another verb. Such cases include

he had expertly groomed the stallion

and

they will already have come home.

As an example, one of the rules for future perfect is

verb_phrase_2(*(head(futperf(root(Inflnitive))),
mods(Adv)),Number,Person,Type) ->

[will], [have],

adverb-phrase (Adv),
[V], {averb (Inflnitive,Past,SingThrd,PresPart,V,Type)}.

Note that this rule finds the correct conjugation by forcing the verb, which
must unify with the clause [V], to unify with the argument for past participle
in the dictionary entry. For future perfect there are three more rules to cover
other permutations and combinations. And there are a few more for past
perfect and present perfect.

Similar considerations for the singular third-person subject serve to fur-
ther populate the set of present simple and present perfect rules. By using
recursion and special tests, our final set (shown in sect. D.9), which covers
all 42 cases, has been kept to 17 rules:

The structure argument in the above future perfect rule,

*For a suggestion on how to begin building a recursive construction of tensed verb phrases as opposed to
the somewhat tedious enumeration of cases employed here, see Pereira and Warren [5].

25

*(head(futperf(root (Inflnitive))),mods(Adv))

both manipulates and augments the original surface structure. This is ap-
parent in the example shown in figure 10. The adverb has been moved to the
rightmost position among the children of the node *. This makes it easier
to find. We have also replaced the surface verb, gone, with its infinitive, call-
ing it the ROOT. This addition will facilitate semantic analysis because any
information in the semantic knowledge base about going will all be stored
under the entry GO. Finally, we have dropped the auxiliary verbs will and

Sentence Entry

Mary will have slowly gone to the river

Parse Tree

Figure 10: Tensed verb.

" Nodes labeled * are artifacts of the way the grammar rules are written. They can be thought of as being
absorbed into their parents.

26

EE EM I

have, which do not appear in the parse tree. Apparently, the only function
of temporal auxiliaries is to mark verb tense. This we do in the tree at the
node FUTPERF. A simple traversal of the VP branch downward will recover
and regiment the desired information about when and in what manner Mary
approached the river.

A separate but similar set of rules for the verb to be is shown in sec-
tion D.10. This verb is notoriously distinct in both syntax and meaning
from the action verbs. Study of the rules for predicates (sect. D.3) will
show some of the special syntactic behavior of this verb (which is treated
as a special kind of sense verb *). Although to be participates in the usual
six tenses, it is more irregular than the other verbs. Otherwise, the rules
for be-verb-phrase resemble the rules for verb-phrase. In the dictionary
(sect. D.12) we have entered the forms of the verb to be one by one using
the predicate beverb. This is an alternative to the method that we used for
action verbs, storing all verb forms under one predicate.

5 Ground Not Covered

Although our grammar largely accomplishes the goals laid down in the in-
troduction, this should not be surprising. In fact, there are many structures,

features, and restrictions of language that the grammar does not accommo-
date. It may be worthwhile to mention some of what is missing.

The sentence Every man loves a woman is ambiguous (though most read-
ers will first think of only one of the two possible readings). At the level of
logical form, the ambiguity can be explained as a matter of quantifier scope:

(Vx)(man(x) = (3y)(woman(y) A loves(xy))

versus

(]y)(Vx)(man(x) =:' woman(y) A loves(x, y)).

Our grammar gives no hint of this or any other problem about quantifiers. It
would parse the sentence as a subject, every man, with a predicate consisting
of a verb, loves, and a direct object, a woman.

It is certainly possible to hold that there is nothing wrong with this parse
and that quantifier scoping should be handled by another module. The ques-

*Other verbs in this family include seem, become, and look.

27

tion is, in which module should we place the algorithms that handle quanti-
fiers? Clearly, surface structure contributes relevant information here. But a
good case can be made that in most discourse, other, pragmatic information
must be used to (a) decide whether and what kinds of logical quantifiers to
use and (b) determine their scopes. Further, in much dialog, quantifiers may
not be called for.

Take an example involving the so-called anaphoric pronoun:

Jack took a number and divided it in two.

This seems to be a classic case of short-range syntactic anaphora. The pro-
noun it seems to stand for the noun number. On this interpretation, the
logical form might resemble

(3x)(number(x) A took(jack, x) A divided(jack, x, 2)).

If this fact about it is totally a matter of syntax, shouldn't this recognition
be built into the parser? The DCG could be rewritten to do the job.

But now consider the original sentence embedded in the following se-
quence:

It was Jack's turn at the game of divide the pie.
His task was to pick a number from the jar and then

divide the pie into that number of pieces.
Jack took a number and divided it in two.
Which number did Jack pick?
Answer: the number two.

Here again, the surrounding context of the sentence determines logical form.

Passives (he was eaten by a lion), imperatives (go up on that ridge), and
questions (where are they?) cannot be parsed by our rules. Obvious forms of
these structures could easily be added as new rules (making intelligent use
of the structure argument).

Problems in dealing with conjunctions are notorious. Take a short exam-
ple:

The dog bit my left hand and foot.

28

Does left modify hand only or should left be distributed over both hand and
foot? Or should left modify the conjunctive phrase hand and foot as it would
in the sentence

the left hand and foot look like better specimens than
either those in the center or the single hand at
the far left.

Of course, the syntactic parser cannot always make the proper determination
unassisted. Perhaps it should deliver all three parses for later choice. Or per-
haps it should deliver an ambiguous parse tree ready for further refinement.
This seems to be what the current rules do about quantification.

Much talk about human activity uses the progressive aspect, as in

the group is crossing the river.

In our grammar, the predicate of this sentence gets parsed as the verb to
be followed by a participial phrase. Thus, we do not treat the progressive
as a verb type on a par with tensed verbs. We believe our treatment may
be just as workable as other treatments which incorporate progressive verb
forms into the rules of grammar.

Our grammar has leaks through which unacceptable sentences and unac-
ceptable parse trees can enter. For example, our rules cannot show that in
front modifies only the noun phrase and never the verb phrase in

the men in front will have crossed the river.

Other leaks involve various devices for negation. The rules do not disallow

they not will have crossed the river.

In DCG's, new rules, new argument places for predicates, and new conditions
(wrapped in braces on the right-hand sides of rules) can all be used to add
more restrictions to handle these cases.

It seems that, if desired, any of the above additional stuctures and re-
strictions could be added to the DCG. This suggests that the existing DCG

29

could undergo incremental growth to accommodate these things. Whether
the incremental approach will always satisfy can probably be questioned. A
less naive, more theoretically based, and more parsimonious grammar would
gain greater syntactic coverage more elegantly (see, for example, McCord
[4]). And any serious attempt to advance the state of the art in parsing Eng-
lish would be driven to such a grammar. The advantage of a naive grammar
such as the one developed for this report is in ease of writing. For certain
simple constructions and for an introduction to parsing, this grammar seems
adequate.

Some real-time discourse is not grammatically correct. Noting this, one
may be tempted to leave off using rules that seem to require exact conformity
to correct syntax. Recalling the previous remarks in section 4.2, perhaps one
should resist the temptation. On this matter it is relevant to point out that
the concept of deviant syntax presupposes a concept of correct syntax. The
fact of deviant syntax should make for more work in building parsers rather
than suggest an escape from the approach taken in this report.

6 Concluding Comments

The work reported here represents an initial attempt at implementing a DCG
in service of other studies in language processing. We have used the DCG to
implement modularized syntactic parsing of a few forms of sentence. A goal
for the future will be to look at what kinds of parse trees one might want the
syntactic module to deliver. By making free use of the structure argument,
we have found that DCG's are most well suited to this kind of study. DCG's
are easy to write, easy to use, and easy to modify.

All of the advantages found in a DCG carry over to possible real-world
applications. But real-world applications raise questions which we have not
addressed. One sort of question centers around coverage; does the grammar
handle any utterance or text it might really encounter? We have hinted at
the vastness of natural language in various places above. Perhaps one can
contrive applications where the coverage required can be limited in some
reasonable, though still useful ways. Assuming this, questions of processing
time may become important. How long will the system take to process each
message, utterance, or piece of text?

In a research environment, the system takes too long if waiting for a
parse to complete is annoying or if there is the worry that parsing time may

30

annoy an audience. In a real-world application, parsing time must (only)
meet requirements of some larger system. One of the possible applications of
the work described in the introduction is autonomous processing of streams
of messages in background. In this case there is no immediate interaction
with a human user and processing time may be less important. Where there

is human interaction, perhaps something less than one second per sentence
will do for an average parsing time.

DCG's implemented in Prolog are top-down parsers. Parsing then be-
comes a matter of many trials at predicate satisfaction and unification. There
is a great deal of time-consuming backtracking. And, since our grammar is
largely a declarative encoding of facts about language, there is little time sav-
ing control built into the grammar. The philosophy here was to concentrate
on the logic of the problem at hand, leaving processing to the underlying
implementation of Prolog. (The implementation on the Symbolics 3675 is
fast and it uses indexing of predicates to achieve very fast searching for the
right predicate to satisfy.)

Here are some parsing times for typical sentences using the grammar in
appendix D:

before Mary worked they had eaten (30 ms)

before Mary will have worked they will have eaten (31 ms)

Mary will have worked before they will have eaten (274 ms)

Mary had it before they had it (174 ms)

Mary will have worked (2 ms)

Mary will have it (10 ms)

the black stallion ate an apple (6 ms)

The backtracking discernible in these results is caused by trying out false
leads. It follows that the smaller the grammar, the shorter the parsing time.
To illustrate, take the black stallion ate an apple. We used this sentence
as the first example fed to the tiny grammar shown in section A.3. The

31

time that grammar takes to process the sentence is only 0.47 ms, an order
of magnitude faster than the much larger grammar of appendix D. We con-
clude that parsing-time benchmarks can be misleading and perhaps useless
in themselves.

32

Literature Cited

1. W.F. Clocksin and C.S. Mellish, Programming in Prolog, Springer-Verlag,
Berlin, 1981.

2. Donald Davidson, The Logical Form of Action Sentences, in The Logic of
Decision and Action (ed. by N. Rescher), University of Pittsburg, Pittsburg,
1967.

3. Keith S. Donnellan, Reference and Definite Descriptions, Philosophical Re-
view, Vol. LXXV, 1966, pp. 281-304.

4. Michael C. McCord, Using Slots and Modifiers in Logic Grammars for Nat-
ural Language, Artificial Intelligence, Vol. 18, 1982, pp. 327-367.

5. Fernando C.N. Pereira and David H.D. Warren, Definite Clause Grammars
in Language Analysis, Artificial Intelligence, Vol. 13, 1980, pp. 231-278.

6. Leon Sterling and Ehud Shapiro, The Art of Prolog, MIT, Cambridge, Mass.,
1986.

7. User's Guide to Symbolics Prolog, Symbolics, Inc., Cambridge, Mass., 1986.

8. John E. Warriner, English Grammar and Composition - Fourth Course,
Harcourt Brace Jovanovich, Orlando, 1982.

9. Terry Winograd, Language as a Cognitive Process, Volume 1: Syntax, Ad-
dison Wesley, Reading, 1983.

33

Appendix A Simple Grammars

Here are three simple but progressively better definite clause grammars.

A.1 A Simple Grammar

%%%/. -*- mode: prolog; syntax: prolog; package: prolog-user; -*-

U.l, A simple grammar, translated into prolog
sentence --> noun-phrase, verb-phrase.
noun-phrase -- > determiner, noun.phrase.
noun-phrase -- > noun.
noun-phrase -- > adjective, noun-phrase.
noun-phrase -- > noun-phrase, prepositional-phrase.
verbphraso -- > verb.
verb-phrase -- > verb, noun-phrase.
verb.phrase -- > verb, prepositional-phrase.
prepositional-phrase -- > preposition, noun-phrase.
Um,. the dictionary
determiner--> (the].
determiner--> [a]
determiner--> [an].
noun--> [stallion].
noun--> [apple].
noun--> [man].
noun--> [men].
noun--> [mary].
noun--> [cape].
noun--> [river].
adjective -- > [black].
verb--> [beckoned].

verb--> [ate].
verb--> [crossed]

preposition --> [in].

35

Appendix A

A.2 A Better Grammar

%%% -*- mode: prolog; syntax: prolog; package: prolog-user; -.-

.7. A less simple grammar, translated into prolog
7.7. This grammar avoids infinite loops caused by left recursion
7.7. in grammar rules

sentence --> noun-phrase, verb-phrase.
noun-phrase -- > determiner, noun.phrase_2.
noun-phrase -- > noun.phrase_2.
noun.phrase_2 -- > noun.
noun-phrase_2 -- > adjective, noun-phrase_2.
noun-phrase_2 -- > noun-phrase_3, prepositional-phrase.
noun-phrase_3 -- > noun.
verb-phrase -- > verb.
verb-phrase -- > verb, noun-phrase.
verb-phrase -- > verb, prepositional-phrase.
prepositional-phrase --> preposition, noun-phrase.
XX the dictionary
determiner--> [the].
determiner--> [a].
determiner--> [an].
noun--> [stallion].
noun--> [apple].
noun--> [man].
noun--> [mary).
noun--> [cape].
adjective --> [black].
verb--> [beckoned].
verb--> Cate].

preposition --> [in].

36

Appendix A

A.3 A Parsing Grammar

%%% -*- mode: prolog; syntax: prolog; package: prolog-user; *

%/% A simple structure grammar, translated into prolog
U./ The first argument in each rule stores the syntactic structure

UX which gets built up during parsing

sentence(s(NPhr ,VPhr)) -- > noun-.phrase(NPhr), verb-.phrase(VPhr).

noun-.phrase(np(Det ,NPhr2)) -- > determiner(Det), noun-.phrase-.2(NPhr2).
noun-.phrase~np(NPhr2)) ->noun-.phrase-.2(NPhr2).

noun-.phrase-.2(np2(N)) ->noun(N).

noun-.phrase-.2(np2CAdj ,NPhr2)) ->adjective(idj), noun-.phrase-.2(NPhr2).

noun-phrase-.2(np2(NPhr3,PPhr)) ->noun..phrase_.3(NPhr3), prepositional-phrase(PPhr).

noun-.phrase..2Cnp3(N)) -- > noun(N).
verb-.phrase(vp(V)) -- > verb(V).
verb-.phrase(vp(V,NPhr)) ->verb(V), noun-.phrase(NPhr).

verb-.phrase(vp(VPPhr)) ->verbCV), prepositional-phrase(PPhr).

prepositional-phrase(pp(Prep,NPhr)) -- > preposition(Prep), noun-phrase(NPhr).

%% terminal rules
noun~n(N)) -- > [N),{is-.noun(N)}.
determiner(det(D)) -- D) ,is-.determiner(D)}.

adjective(adj CA)) -- >1A ,is-adjectiveCA).
verb~vCV)) -- > EVL~fis-.verbCV)}.

preposition~propCP)) -- [PJ,{is-.preposition(P)}.

%% the dictionary
is-.determiner~the).
is-.determiner~a).
is ..determiner Can).
is-.noun(stallion).

is-.noun(apple).

is-.noun~man).

is-.noun(men).

is-.noun~mary).

is-.noun~cape).
is..noun(river).
is..adjective~black).
is-.verb (beckoned).

is-.verb(ate).
is..verb(crossed).
is-preposition(in).

37

Appendix B PROSENT

Below is the listing for the module PROSENT. The top level function is
sentsys.

The operation of this Lisp function sentsys (shown in the listing below)

can be described as follows. The input sentence is read as a string and then
converted to a Lisp list. This list is locally bound to the variable sent. To
parse the sentence, sentsys must call Prolog. The macro with-unbound-logic.

variables generates a Prolog variable, named prs. Next, the macro with-

query-satisfied in effect submits the query (sentence prs sent nil) to Prolog.
As each successful parse is returned (bound to prs), it is pushed on the global
list *parse-lst*. After parsing and receiving an appropriate reply from the

user, sentsys calls draw-parse-tree (described in app. C).

-*- Mode: LISP; Syntax: Zetalisp; Base: 10; Package: PL-USER; -*-

prosent.lisp

(defvar *parse-list* nil "List of possible parse trees")
(defvar *sentence-symbol* 'sentence "So we are expecting to use a grammar with

'sentence' as the top level symbol for non-terminal node")
(defvar *sentwin* nil "This is the window for sentence entry.")
(setq *sentwin* nil)
(defun set-up-sentwin ()
"Creates window for sentence entry."

(setq *sentwin* (tv:make-window 'tv:window
':default-style '(:fix :bold :large)
':borders 3
':expose-p t
; make a wide short window at top of screen

':edges '(64 43 1131 200)
' :label ""
':blinker-p t
':save-bits t)))

(defun sentsys)
"Gets a sentence and draws the parse tree"

;; check for existence of *sentwin*
(cond (*sentwin* nil)

(t (set-up-sentwin)))
(let (phrase)

39

Appendix B

;; loop until the user is done entering sentences
(send *sentwjn* :Select)
(loop with done = nil

until done do

output prompt to user
(send *sentwin* :set-cursor-visibility :on)
(send *sentwin* :clear-window)

(scl:with-character-style ('(:f ix :roman :normal) *sentwin*)
(send *sentwin* :line-out " Enter the sentence to parse ('Q' exits):")

;Read a line of text. Then convert it into a lisp form with parens around it.
(scl:with-character-style (,(:f ix :roman :normal) *sentwin*)

(send *sentwin* :line-out ")
(format *sentwin* 41 4)

(setq phrase (read-line *sentwin*))

(let ((Bent (read-from-string (string-append "(" phrase IT)))
,; Q exits
(if (equal sent I(Q))

(setq done t)

(setq *parse-list* nil)

;Get all possible parses of the sentence
(with-unbound-logic-variables (prs)

(with-query-satisfied '(,*sentence-symbol* ,prs ,sent nil)
(push (read-from-string (format nil "A"l prs)) *parse-list*)

nil))

(cond ((equal *parse-list* nil)
(scl:with-character-style ('(:f ix :roman :normal) *sentwin*)

(send *sentwin* :line-out "S"))
(scl:with-character-style ('(:f ix :roman :normal) *sentwin*)

(send *sentwin* :line-out

" That is not a grammatical sentence."))

(t (loop with exit = nil
with parsenum = 0

with len = (1- (length *parse-list*))

do

(scl:with-character-style ('(:fix :roman :normal)
sentwin)

(send *sentwin* :line-out

40

Appendix B

(send *sentwin* :line-out

(f ormat nil
Hit a key to display tree -1 out of A,

(i+ parsenum)
(1+ Ien))))

(send *sentvin* :tyi)
(send *sentwin* :clear-windov)
(scl :vith-character-style (,(:f ix :roman :normal)

Sentwin)
(send *sentwin* :line-out "Sentence Entry")
(send *sentwinL* :line-out)

(format *sentwjn* 1119
(send *sentwin* :set-cursor-visibility :off)
(send *sentvin* :line-out phrase)
(setq exit (draw-parse-tree (nth parsenum *parse-list*))

until (equal exit)exit)
if (equal exit 'next)

do (setq parsenum (if (equal parsenum len)
0
(1+ parsenum)))

else
do (setq parsenum (if (equal parsenum 0)

len
(1- parsenum))))))))

After the user is completely finished, bury the window
(send *sentwin* :bury)
(cond (*outwins

(send *outwin* :bury)))
'Done))

41

Appendix C PROTREE

The operation of PROTREE (shown in sect. C.2 below) can be described
as follows. The function draw-parse-tree takes a parse tree list (as delivered
by sentsys, described in app. B) as its argument and draws the corresponding
tree. This process divides into five steps. First, the mouse-sensitive menus
and output window (described in sect. 3.5 in the main body of the report)
are set up. Second, the nested list form for the parse tree is converted into
a one-dimensional array, in which each element is an instance of the Lisp
flavor tree-node. Third, the proper display font is chosen. Fourth, the screen
positions of the nodes are set. Finally, the nodes and arcs (straight lines) are
drawn.

The function make-mouse-menu sets up the menus. And the function
init-window-io creates the window *outwin* as an instance of the flavor
treewindow to complete the first step.

The second step is accomplish by the function build-array which is called
with three arguments: the array to receive the parse tree, the list form of
the tree, and the parent of the current node to be entered into the array.
The parent of the top node is nil. Build-array first makes an instance of the
flavor tree-node to represent the current node. This flavor has five instance
variables: parent, which contains the array position of the parent of the
current node; children, which contains a list of array positions of any children;
label, which contains the text to be displayed at this node; and z and y,
which contain the screen coordinates of the top edge of the node. This flavor
may be expanded in the future to store other information, such as the root
form of a verb, whether the node has been moved to a new position by a
transformation rule, or the synonym for a word.

The two instance variables parent and label * are set immediately by build-
array. Then, if the node has children, build-array invokes the flavor method
set-children to both set the value of children and call build-array recursively
on each child.

After traversing the parse tree, build-array calls drop-terms in order to
move all terminal nodes down to the same horizontal position. Drop-terms
inserts extra nodes, each with the label "I" between terminal nodes and
penultimate nodes as required. Thus, these nodes look like segments of the

*Currently, the label is taken as the head of the list which delimits a node in the parse tree (e.g., subj,
np2, stallion).

43

Appendix C

arcs which will appear between nodes.

The function get-font is called to accomplish the third step in draw-parse-
tree.*

In the fourth step, the function set-terminal-coordinates spaces the ter-
minal nodes equally along the bottom of the screen. Next the function
set-z-coordinates recursively moves up the tree (from terminals to top node)
by placing nonterminal nodes either directly over single children or mid-way
between two or more children. Finally, set-y-coordinates moves up the tree
while incrementing vertical positions of nodes at each level.

The tree is drawn by sending the top node the message :draw. This flavor
method gets the z and y coordinates and the label from the node's flavor-
instance, which is now fully instantiated. If the node is a padding node,
with label "I", a vertical line is drawn. Otherwise the node's label is drawn
and enclosed in a box. A mouse-sensitive area is inscribed over this box.
Recursive calls to :draw repeat these operations for the remaining nodes in
the tree.

C.1 Suggested Modifications to PROTREE

Currently the terminal nodes are spaced widely to ensure that none of the
nonterminals will overlap on the screen. A more elegant solution would be
to scan the tree breadth first to find nodes that would overlap with their
left siblings. These nodes would then be moved rightward with parents and
children following. The tree must then be rescanned as before.

Parse trees for sentences which are either much longer or more complex
than those shown in figures 9 and 10 will not fit in our window. The obvious
solution is to employ some variety of window scrolling so that portions of the
tree can be displayed in succession. This could take the form of redrawing
portions of the tree, or use of scrolling windows, or use of the Symbolics
Genera 7.1 presentation system.

*The listing for PROTREE shown in this report makes font choosing ineffectual because there is but one
font on the list of fonts. If there were other fonts, get-font would choose the largest of these possible for
fitting the terminal nodes across the screen.

44

Appendix C

C.2 Draw-Parse-Tree and Supporting Functions

-*- Package: PL-SER; Mode. LISP; Base: 10; Syntax: Zet&. sp -*-

;; Flavor for a pointed tree node
(defflavor tree-node

((parent nil) ; number of parent node
(children nil) ; list of child node numbers
x ; xcoor for display on screen
y ; ycoor for display on screen
(label "') ; text label of node

))
:settable-instance-variables)

(zl:defconst *outwin* nil) ; output window for parse tree
(zl:defconst *xlim* 900) ; maximum x limit for tree size
(zl:defconst *ylim* 543) ; i "go y " f It " "

(zl:defconst *maxheight* 550) ; maximum height of tree
(zl:defconst *vertgap* 4) ; minimum vertical gap between tree levels,

measured in character lines

;; the list of fonts used by the program
;; format is (style baseline), where baseline was taken from the font attributes
(zl:defconst *fontlist* '(((:fix :roman :normal) 10)))

((:dutch :roman :very-small) 8)))

degenerate list of fonts

;; For auto choosing of font size set *fontlist* to following

(((::fix :roman :very-large) 16)
((:dutch :roman :normal) 13)
((:fix :roman :normal) 10)
((:dutch :roman :very-small) 8)
((:fix :uppercase :very-small) 5)))

;; flavor of a tree window. Uses mouse-sensitive items.

(defflavor treewindow ()
(tv:basic-mouse-sensitive-items
tv:window))

(zl:defconst thelist 0) ; list for accumulating mouse menu items

45

Appendix C

(zl:defconst *chheight* nil) ; character height

(defun build-array (trarray trlist parent)
"Creates a pointed tree array out of the lisp list form of tree."

(let ((node (make-instance 'tree-node
create a new tree-node, labeled with the label of the list form

:parent parent
:children nil
:label (string (if (listp trlist) (car trlist)

trlist)))))

(let ((nodenumber (zl:array-push-extend trarray node)))
add it to the tree

(if (listp trlist) ; if there are children, create them
(send node :set-children

(mapcar 'build-array (circular-list trarray) (cdr trlist)
(circular-list nodenumber))))

(drop-terms 0 trarray (I- (depth 0 trarray)))
; drop the terminals to an even level for easy sentence reading

;; the next line returns the vaiue of nodenumber
nodenumber)))

(defun depth (nodeno tree)
"Returns the depth of tree from nodeno down."

(let ((node (aref tree nodeno)))
(if (null (send node :children))

i
(1+ (apply 'max (mapcar 'depth (send node :children)

(circular-list tree)))))))

(defun set-all-coords (tree style)
"Sets all coords of all nodes of tree, with printing in style."

(set-terminal-coords tree style)
(set-node-coords tree))

(defun set-terminal-coords (tree style)
"Set the coords of all terminals of tree, with printing done in style."

(let ((terms (get-all-terms tree 0))) ; all the terminal numbers

46

Appendix C

(loop for terminal in terms
for termnode = (aref tree terminal)

;: get the length in piTeis of the label string
for termlen = (zl:multiple-value)

(send *outwin* :string-length
(format nil " -A "

(send termnode :label))
0 nil nil style))

for halflen = (zl:// termlen 2)
for xcoor from 10 do ; current xcoor (updated for each terminal)
; set the x to xcoor modified by the string-length

(send termnode :set-x (+ xcoor halflen))
(setq xcoor (* xcoor termlen 20)) ; reset xcoor
(send termnode :set-y *ylim*)))) ; y is set to the lowest level possible

(defun get-all-terms (tree nodenum)
"Returns a list of terminal-node numbers of a tree from nodenum down."

(let ((node (aref tree nodenum)))
(let ((kids (send node :children)))
(if (null kids)

; if it's a terminal, it's the only terminal returned
(list nodenum)

; a list combining the terminals of its kids
(apply 'append (mapcar 'get-all-terms (circular-list tree) kids))))))

(defun set-node-coords (tree)
"Sets the coords of the tree nodes, assuming the terminals are already set."

(set-x-coords 0 tree)
(set-y-coords 0 tree))

(defun set-x-coords (nodenum tree)
"Sets the x-coords of the tree starting at nodenum. Terminals are assumed to
be set already."

(let ((node (aref tree nodenum)))
(let ((kids (send node :children)))
(if (null kids)

(send node :x) ; if it's a terminal, the coord is already set
(let ((firstx 9999)

(lastx 9999))
(setq firstx (set-x-coords (car kids) tree))
; the first x-coor of the child nodes

47

Appendix C

(loop for child in (cdr kids) do

(setq lastx (set-x-coords child tree)))
; the last x-coor of the child nodes

Jif only one child, se+ this node to the child's x
(send node :set-x (if (= lastx 9999)

firstx
otherwise the middle of the first and last kids x's

(zl:// (+ firstx lastx) 2)

(defun set-y-coords (nodenum tree)

"Sets the y-coords of the tree starting at nodenum. Terminals are assumed to

be set already."

(let ((node (aref tree nodenum)))
(let ((kids (send node :children)))
(if (null kids)

(send node :y) ; if it's a terminal, the coord is already set
(loop for child in kids

for kid-y = 9999 do
(setq kid-y (set-y-coords child tree))
; set the y-coords of the next level down

set this y-coord to a level above its kids' ycoords
finally (return (send node :set-y (- kid-y *vertgap*)))

(defun drop-terms (nodenum tree drop)

"Drops all terminals of a given node to the same depth by inserting nodes

labeled 'I'"

(setq drop (I- drop)) ; decrease drop distance

(let ((node (aref tree nodenum)))
(let ((kids (send node :children)))
(loop for child in kids ; for each child

for chnode = (aref tree child) do

if the child is a terminal, drop it

(if (null (send chnode :children))
(if (> drop 0)

(let ((tempnode node)
temporary variabies for the current node and child

(tempkid chnode)

(tempnum nodenum)

(kidnum child))

48

Appendix C

(loop for count from 1 to drop by 1
; for each level to drop node

create a tree-node labeled "I"
for newnode = (make-instance 'tree-node

:parent tempnode

:children tempkid
:label "[")

add to array, lengthen if necessary

for newnum = (zl:array-push-extend tree ne~node) do

insert newnode between tempnode and tempkid
(send tempnode :set-children

replace child with newnode
(subst newnum kidnum (send tempnode :children)))

point the newnode to the tempkid
(send newnode :se.-children (list kidnum))
(send newnode :set-parent tempnum)
; point the newnode up to tempnode
(send tempkid :set-parent newnum)
; point the tempkid up to newnode
(setq tempnode newnode)
;move the temp. var's down a level to drop again
(setq tempnum newnum))

)
)

if the child is not a terminal, drop its terminals

(drop-terms child tree drop)
)

)
)

)

(defmethod (:draw tree-node) (tree style)
"Draws the tree by 1. Drawing this node 2. Calling :draw-children"

(let ((text (send self :label)))
(let ((x2 (1+ (- (send self :x)

(zl://
(zl:multiple-value)

length in pixels of label
(send *outwin*

:string-length text
0 nil nil style))

49

Appendix C

2))))
(y2 (+ (send self :y) *chheight*)))

(if (not (equal text "I")) ;it's not a padding node
(let ((x3 (+ (- (* 2 (send self :x)) x2) 3))

(y3 (1- (send self :y)
(scl:with-character-style (style *outwin*)

draws the label
(graphics:draw-string text x2 y2
:stream *outwin*))

(let ((x2 (- x2 2))

draws the box
(send *outwin* :draw-lines tv:alu-ior x2 y2 x2 y3 x3 y3 x3

y2 x2 y2)
*sets up mouseable area

(send *outwin* :primitive-item ':node-type self x2 y3 x3 y2)))
(let ((x3 (send self :x))

(y3 (send self :y))
draws the -.ertical line for a padding node

(send *outwin* :draw-line x3 y3 x3 (+4 y3 *chheight*))))
(send self :draw-children tree style))))

(detmethod (:draw-children tree-node) (tree style)
"Draws a tree's arcs and send the children to :draw"

(let ((en (length (send self :children)))
(selfx (send self :x))

(selfy (send self :y))

(if (not (zerop len))

(loop for childno in (send self :children)
f or child = (aref tree childno)
for xcoor = (send child :x)
for ycoor = (send child :y) do

draw the child's arc

(send *outwine :draw-line self x (+ I selfy *chheight*) xcoor
(I- ycoor))

(send child :draw tree style)))))

(defun get-font (tree)
"Choose the largest font possible for drawing the tree by checking to see if
the terminals fit across the bottom"

(loop for fontpair in *fontlist*

50

Appendix C

for style = (car fontpair)
with terms = (mapcar 'send

(mapcar 'aref (circular-list tree) (get-all-terms
tree 0))

this double-mapcar returns a list of terminal labels
(circular-list ':label))

;; the next part gets the length in pixels of the string, in font "style"
for treewidth = (+ (* (length terms)

(zl:multiple-value 0
(send *outwin* :string-length (format nil "

0 nil nil style)))
(zl:multiple-value ()
(send *outwin* :string-length

(format nil "I" terms)
0 nil nil style)))

for dep = (depth 0 tree)
for treeheight = (* 4 (cadr fontpair) dep)

it "fits" vertically if there is
a gap of at least four rows between levels

until (and (< treewidth *xlim*) (< treeheight *maxheight*))
finally (setq *vertgap* (zl:// *maxheight* dep))
; the maximum gap which will still fit
finally (return fontpair)))

(defun make-mouse-menu ()
"Creates the list to be used as a menu for mouse-sensitive areas"

(tv:add-typeout-item-type thelist
:node-type "Next Parse" next
nil "Display the next parse tree of this sentence")

(tv:add-typeout-item-type thelist
:node-type "Previous Parse" prey
nil
"Display the previous parse tree of this sentence")

(tv:add-typeout-item-type thelist
:node-type "Examine Node" (examine-node)
t "Examine details of node information")

(tv:add-typeout-item-type thelist
:node-type "Exit Tree Display" exit
nil
"Exit parse tree display and return to previous window")

51

Appendix C

(tv:add-typeout-item-type thelist
:exit-type "Next Parse" next
nil
"Display the next possible parse tree of this sentence")

(tv:add-typeout-item-type thelist
:.exit-type "Previous Parse" prey
nil
"Display the previous parse tree of this sentence")

(tv:add-typeout-item-type thelist
:egit-type "Exit Tree Display" exit
t

"Exit parse tree display and return to previous window")

(tv:add-typeout-item-type thelist
:next-type "Next Parse" next
t

"Display the next possible parse tree of this sentence")
(tv:add-typeout-item-type thelist

:next-type "Previous Parse" prev
nil
"Display the previous parse tree cf this sentence")

(tv:add-typeout-item-type thelist
:next-type "Exit Tree Display" exit
nil
"Exit parse tree display and return to previous window")

(tv:add-typeout-item-type thelist
:prev-type "Next Parse" next
nil
"Display the next possible parse tree of this sentence")

(tv:add-typeout-item-type thelist
:prev-type "Previous Parse" prev
t
"Display the previous parse tree of this sentence")

(tv:add-typeout-item-type thelist
:prev-type "Exit Tree Display" exit
nil
"Exit parse tree display and return to previous window"))

(defun examine-node (node)
"Examines node clicked on. Called by process-mouse. Not yet supported."

(let ((examwin (tv:make-window 'tv:vindow
':edges '(64 43 1131 200)
':label "Examine Node"

52

Appendix C

':expose-p t)))
(graphics:draw-string
(format nil "Node: 'A" (send node :label)) 100 25 :stream examwin)

(graphics:draw-string
"Examining nodes is not yet supported." 100 50 :stream examvin)

(graphics:draw-string
"Please hit a key to continue." 100 75 :stream examuin)

(send examuin :tyi)
(send examwin :kill)))

(defmethod (:who-line-documentation-string treewindow) 0
"Left selects node to examine. Right presents menu of operations.")

(defun process-mouse 0
"Gets mouse blip and executes matching function until exit"

;; turn off screen graying
(tv:set-screen-deexposed-gray nil)

;; create "Exit" box in upper left corner
(send *outwin* :primitive-item ':exit-type 'exit 54 40 225 59)
(send *outwin* :draw-lines tv:alu-ior 52 38 52 59 225 59 225 38 52 38)
(scl:with-character-style ('(:fix :roman :very-large) *outvin*)

(graphics:draw-string "Exit" 116 56 :stream *outwin*))

;; create "Next Parse" node in upper left corner
(send *outwin* :primitive-item ':next-type 'next 54 62 225 81)
(send *outvin* :draw-lines tv:alu-ior 52 60 52 81 225 81 225 60 52 60)
(scl:vith-character-style ('(:fix :roman :very-large) *outvin*)
(graphics:draw-string "Next Parse" 79 78 :stream *outwin*))

create "Previous Parse" node in upper left corner
(send *outvin* :primitive-item ':prev-type 'prey 54 84 225 103)
(send *outwin* :draw-lines tv:alu-ior 52 82 52 103 225 103 225 82 52 82)
(scl:with-character-style ('(:fix :roman :very-large) *outwin*)
(graphics:draw-string "Previous Parse" 55 100 :stream *outwin*))

process mouse blips
(loop for blip = (send *outwin* ':list-tyi)

until (not (listp (cadr blip)))
if (listp (cadr blip))

do (eval (append (cadr blip) (list (third blip))))
finally (send *outwin* :clear-window)
finally (send *sentvin* :select)
finally (tv:set-screen-deexposed-gray tv:6-gray)

53

Appendix C

finally (return (cadr blip))))

(defun draw-parse-tree (tree)
"Draws the parse tree as returned by parse and allows examination of nodes"

(make-mouse-menu) ; prepares mousable menu

;; test for existence of *outwin*
(cond (*outwin*

(send *outwin* :select))
(t (init-window-io))) ; prepares output window

(let ((*tree* (init-tree)) ; creates array of nodes to hold tree
(*chheight* 0)) ; font baseline

(build-array *tree* tree nil) ; fill the array with a tree of nodes/pointers
(let ((fontpair (get-font *tree*))) ; (style font-baseline)
(setq *chheight* (cadr fontpair))
(set-all-coords *tree* (car fontpair))
; arrange node coords based on chosen font
(send (aref *tree* 0) :draw *tree* (car fontpair))))
draw the tree at chosen coords

(process-mouse)) ; use the mouse to examine the tree.
Return 'next or 'exit

(defun init-windov-io)
"Creates a window for displaying the parse tree"
(setq *outwin* (tv:make-vindow 'treewindow

':edges '(64 200 1131 793) ; 64 43 1131 793
':label "Parse Tree"
P:borders 1
':blinker-p nil
':save-bits t
':expose-p t
':item-type-alist thelist
accumulates mouse menu items

(send *outwin* :select))

(defun init-tree ()
"Creates an extendable array to hold tree-nodes"
(make-array 10 :fill-pointer 0))

54

Appendix D

Appendix D The Grammar

Following are the listings of the rules and lexicon of the grammar introduced
in section 4.3 of the main body of the report. The sections on the following

pages divide this grammar into convenient bundles.

55

Appendix D

D.1 Sentences and Independent Clauses

% --
% sentences
% --

% independent clauses are sentences

sentence(sCSent)) -->
independent-clause(Sent).

Y if/then statements are sentences

sentence(implies(Sentl, Se~t2)) -->
[if], independentclause(Sentl),
[then], independent-clause(Sent2).

sentence(implies(Sentl, Sent2)) -->
[if], independent.clause(Sentl),
independent-clause(Sent2).

% --

, independent clauses
% ---
7 canonical independent claus,

independent-clause (indcls(Subj, VPhr)) -->

subject (Subj, Number, Person),
predicate(VPhr, Number, Person).

% adverb prefix to a sentence

independent-clause (indcls(Subj, pred(mods(rtshift(ldvphr)), VPhr))) -->

adverb-phrase (Advphr),
subject (Subj, Number, Person),
predicate (VPhr, Number, Person).

independent-clauses using expletive "There" as empty subject ["There are apples"]

independnt-clause (exists(NPhr)) -->

[there, is].

56

Appendix D

subject CNPhr, singular, Person).

independent-.clause (exists(NPhr))->
[there, are],
subject (NPhr, plural, Person).

57

Appendix D

D.2 Subjects and Objects

% --
' subject of a sentence

% --

a nominative case noun phrase is a subject

subject(subj(NPhr), Number, Person) -->

noun-phrase (NPhr, Number, Person, nominative).

% an infinitive verb phrase: "to run" is a subject

subject (subj(IVP), singular, third) -- >

inf.verbphrase (IVP).

%'--
' other noun type parts

'A--

' a nominative case noun phrase is a predicate nominative

prednominative (pdnom(NPhr), Number, Person) -->

noun-phrase (NPhr, Number, Person, nominative).

' any adjective phrase is a predicate adjective

pred-adjective (pdadj(Adj)) -- >

adjective-phrase (Idj).

direct-object (do(NPhr), Number, Person) -- >

noun-phrase (NPhr, Number, Person, objective).

indirect-object (io(NPhr), Number, Person) -->
noun-phrase (NPhr, Number, Person, objective).

58

Appendix D

D.3 Predicates

% --
! predicates

%r -------------------------------------- --------------------------

predicate(pred(Pred2), Number, Person)
predicate-.2(Pred2, Number. Person).

%A verb phrase, prepositions
% example: [I nibbled the carrot in the garden.]

predicate(pred(Pred2, vcomp(kdvs)), Number, Person) -- >

predicate_2(Pred2, Number, Person),
adverbs(Advs).

% sense-verb -\- prepositional phrase
% example: [I am in the garden.]

predicate (pred(VPhr, padv(Advphr)), Number, Person) -- >

senseverb-phrase(VPhr, Number,Person),
adverb-phrase(Advphr).

% an intransitive verb cannot have a direct object

predicate_2 (VPhr, Number, Person) -->
verb-phrase(VPhr, Number, Person, intransitive).

predicate_2 (Pred3, Number, Person) -- >

predicate_3(Pred3, Number, Person).

% sense verb -\- predicate nominative
% example: [I am a rabbit.]

predicate_2 (pred(VPhr, pnom(PredNom)), Number, Person) -- >

sense.verb.phrase (VPhr, Number, Person),
pred-nominative(PredNom, Number, Person_2).

% sense verb -\- predicate adjective
% example: [I am angry.]

predicate_2(pred(VPhr, padj(Adj)), Number, Person) -- >

sense-verbphrase(VPhr, Number, Person),

59

Appendix D

predadjective(Adj).

% verb -\- direct object

predicate_3 (*(VPhr, DirObj), Number, Person) -- >

verbphrase(VPhr, Number, Person, transitive),
direct-object(DirObj, Number2, Person2).

% verb -\- indirect object -\- direct object

predicate_3 (*(VPhr, IndObj, DirObj), Number, Person) -- >

verb-phrase (VPhr, Number, Person, bitransitive),
indirect-object(IndObj, Number2, Person2),
direct-object (DirObj, Number3, Person3).

60

Appendix D

D.4 The Subordinate Adverb Clause

--
subordinate adverb clause

subord-adv-clause(sadvcls(Subconj, IndCls)) -- >

subordconj(Subcoj),
independent-clause (IndCls).

61

Appendix D

D.5 Infinitives

% --
U infinitive verb phrases

% intransitive verbs cannot have objects

inf-verb-phrase_2 (*(to, head(V))) -- >

[to],
IV], {averb (V, Past, SingThrd, PresPart, Part, intransitive)}.

% transitive verbs must have objects

inftverb-phrase_2 (*(to, head(V), NPhr)) -- >

[to], IV],
direct-object (NPhr, Number, Person),
{averb (V, Past, SingThrd, PresPart, Part, transitive)J.

% bitransitive verbs must have indirect and direct objects

inf-verb-phrase_2 (*(to, head(V), IndObj, DirObj)) -- >

[to],

indirect-object (IndObj, Number, Person),
direct-object (DirObj, Number2, Person2),
{averb (V, Past, SingThrd, PresPart, Part, bitransitive)}.

% infinitive verb phrases may or may not have adverb modifiers

infverb.phrase (infvp(InfPhr, vcomp(Advs))) -- >

inf-verb-phrase_2(InfPhr),
adverbs(Adva).

inf-verb-phrase (infvp(InfPhr)) -- >

inf-verb.phrase_2(InfPhr).

62

Appendix D

D.6 Adverbials and Adjectivals

% ---
XX adverbial phrases
% --

adverbs(Advp) -- >

adverbphrase(Advp).

adverbs(advs(Advp,Preps)) -- >

adverb-phrase(Advp),
prepositions(Props).

adverb-phrase (advp(head(Adv))) -- >

adverb(Adv).

adverb-phrase (advp(SubAdvCls)) -- >

subord-adv-clause (SubAdvCls).

adverb-phrase (advp(mod(Adv), Advph)) -- >

adverb (Adv),

adverb-phrase (Advph).

adverb-phrase (advp(PrtPhr)) -- >

participial-phrase (PrtPhr).

adverb-phrase (advp(Prep)) -- >

prepositions (Prep).

%% adjective phrases
% --

adjective-phrase (Adj) -- >

adjective (Adj).

adjectivephrase (adjs(Idj, Idjph)) -- >

adjective (Adj),
adjectivephrase (Adjph).

% adverbs can modify adjectives

adjectivephrase (adjp(Adv, Adj)) -- >

adverb (Adv).

63

Appendix D

adjective (Idj).

% --
/.% prepositional phrase

prepositions(preps(Prphr)) -->
prepositionalphrase(Prphr).

prepositions(preps(Prphr,Preps)) -- >

prepositional-phrase(Prphr), prepositions(Preps).

prepositional-phrase (prepp(head(Prep), (obj(NPhr)))) -- >

preposition (Prep), noun-phrase (NPhr, Number2, Person, objective).

64

Appendix D

D.7 Participials and Gerunds

- --
% participles
% --

participle (part (past(PartPhr)), Type) -->
[PartPhr], {averb (Infinitive, Past, SingThrd, PresPart, PartPhr, Type)}.

participle (part (pres(PartPhr)), Type) -->
[PartPhr], {averb (Infinitive, Past, SingThrd, PartPhr, PastPart, Type)}.

participial-phrase (partp (PrtPhr, NPhr)) -- >

participle (PrtPhr, transitive),
noun-phrase (NPhr, Number, Person, objective).

participial-phrase (partp (PrtPhr, AdvPh, NPhr)) -- >

participle (PrtPhr, transitive),
adverb-phrase (AdvPh),
noun-phrase (NPhr, Number, Person, objective).

participial-phrase (partp (PrtPhr)) -- >

participle (PrtPhr, intransitive).

participial-phrase (partphr (PrtPhr, Advphr)) -- >
participle (PrtPhr, intransitive),
adverb-phrase (Advphr).

' gerund phrases: verbs in their present participle form
% treated as noun phrases
% --

gerund (ger(Part(root(Root))), Type) -->
[Part], {averb (Root, Past, SingThrd, Part, PastPart, Type)}.

gerund-phrase_2 (gerp(Part, NPhr)) -->
gerund (Part, transitive),
noun-phrase (NPhr, Number, Person, objective).

gerund-phrase_2 (gerp(Part)) -- >

gerund (Part, intransitive).

gerund-phrase (gerp(Part)) -- >

65

Appendix D

gerund-.phrase..2 (Part).

gerund-phrase (gerp(Gerp2,Advphr)) -

gerund-.phrase-.2 (Gorp2),
adverb-.phrase (Advphr).

66

Appendix D

D.8 Noun Phrases

%% noun phrases

% a proper noun is a noun phrase

nounphrase (np(head(name(Proper))), singular, third, Case) -- >

[Proper], {propernoun (Proper)}.

infinitive verb phrase is a noun phrase

noun-phrase (np(head(InfPhr)), singular, third, Case) -- >

inf.verbphrase (InfPhr).

% gerunds are noun phrases

noun-phrase (np(head(GerPhr)),singular, third, Case) -- >
gerund-phrase (GerPhr).

% noun with determiner in front

noun-phrase (np(Det, NPhr2), Number, third, Case) -- >

determiner (Det, Number),
noun-phrase_2 (NPhr2, Number).

% noun without determiner

noun-phrase (np(NPhr2), Number, third, Case) -- >

noun.phrase_2 (NPhr2, Number).

pronoun is a noun phrase

noun-phrase (np(head(NPhr)), Number,Person, Case) -- >
pronoun (NPhr, Number, Person, Case).

noun-phrase (np(NPhri, conj(Conj), NPhr2), plural, Person, Case) -- >

noi&.phrase_2 (NPhrI, Number),
(Conj], {conjunction (Conj)},
noun-phrase.2 (NPhr2, Number).

' noun with adjective in front

67

Appendix D

noun.phrase_2 (*(NPhr2, mods(Adj)), Number) -- >

adjective-phrase (Adj),
nounphrase_3 (NPhr2, Number).

%A noun without adjective

noun-phrase_2 (NPhr3, Number) -- >

nounphrase_3 (NPhr3, Number).

%l noun with prepositional phrase after

noun-phrase_3 (*(head(N),Pmods), Number) -- >

noun (N, Number),
noun_.complements (Pmods).

% plain noun

noun-phrase_3 (head(N), Number) -- >

noun (N, Number).

--
XX noun post modifiers can be prepositions, subordinate adjectives, etc.
%--

noun_ complements(ncomps(Pnphr)) -- >

noun_ complement (Pnphr).

noun_ complements(ncomps(Pnphr,Pnmods)) -- >

noun_ complement (Pnphr), noun_complements (Pnmods).

noun_ complement(ncomp(Prphr)) -- >
prepositional-phrase(Prphr).

68

Appendix D

D.9 Tenses for Action Verbs

% verb phrases with/without auxiliary verbs

verb-phrase(vp(Vphr),Number,Person,Type) -- >

verb-phrase_2(Vphr,Number,Person,Type).

verb-phrase(vp(Vphrmods(Adv)),Number,PersonType) -- >

adverb.phrase(Adv),
verbphrase_2(Vphr,Number,Person,Type).

% this predicate tests for third person singular verb forms

singthird(singular,third).

% t e n s e: past simple

verb-phrase_2 (head(past(root(Infinitive))), Number, Person, Type) -- >

[V], {averb (Infinitive, V, SingThrd, PresPart, PastPart, Type)}.

% t e n s e: past perfect

verb-phrase_2 (head(pastperf(root(Infinitive))), Number, Person, Type) --

[had],
[VI, {averb (Infinitive, Past, SingThrd, PresPart, V, Type)}.

verb.phrase_2 (*(head(pastperf(root(Infinitive))),mods(Adv)), Number, Person, Type)

[had],
adverb-phrase (Adv),
[V], {averb (Infinitive, Past, SingThrd, PresPart, V, Type)}.

% t * n s 9: present simple

verb-phrase_2 (head(present(root(Infinitive))), singular, third, Type) -- >

[V], {averb (Infinitive, Past, V, PresPart, PastPart, Type)}.

verb-phras_2 (head(present(root(V))), Number, Person, Type) -- >

{not(singhird(Number,Person))},
[VI, {averb (V, Past, SingThrd, PresPart, PastPart, Type)}.

69

Appendix D

% t e n s e: future simple

verb..phrase.2 (head(future(root(V))), Number, Person, Type)->
[will],

[VI, {averb(V,Past, Singmhrd, PresPart, PastPart, Type)}.

verb-.phrase-.2 (*(head~future(root(V))) ,mods(Adv)), Number, Person, Type)->

[will],
adverb.phrase (Adv),

CV3, {averb(V, Past, Singmhrd, ProsPart, PastPart, Type)j.

%A t e n s e: present perfect

verb-.phrase-.2 (head(presperf(root(Infinitive))), singular, third, Type)->
[has),
[VI, {averb (Infinitive, Past, Singmhrd, PresPart, V, Type)}.

verb-.phrase-.2 (*Chead(presperf (root(Infinitive))) ,mods(Adv)), singular, third, Type)

[has),

adverb-.phrase WOdv,
[VI, {averb (Infinitive, Past, Singmhrd, ProsPart, V, Type)}.

verb-.phrase..2 (head(presperf(root(Infinitive))), Number, Person, Type)->

{not(sing-.thirdCNumber,Person))},
[have),

EV), {averb (Infinitive, Past, SingThrd, ProsPart, V, Type)}.

verb-.phrase-.2 (*(Adv,head(presperf(root(Infinitive)))), Number, Person, Type)->
{not(sing-.thirdCNumber ,Person))},
[have),
adverb-.phrase (WdO,

[VI, {averb (Infinitive, Past, SingThrd, PresPart, V, Type)).

% t e n s e: future perfect

verb-.phrase_.2 (head(futperf(root(Infinitive))), Number, Person, Type)--

[will), [have),

[VI, {averb (Infinitive, Past, Singmhrd, PresPart, V, Type)}.

verb-.phrase-.2 (*(head(futperf(root(Infinitive))) ,mods(Adv)), Number, Person, Type)

[will), [have),
adverb-.phrase (Adv),

[VI, {averb (Infinitive, Past, Singmhrd, PresPart, V. Type)}.

70

Appendix D

verb.phrase_2 (*(head(futperf(root(Infinitive))) ,mods(Adv)), Number, Person, Type)

[will].

adverb-phrase (Adv),
[have],

[V], {averb (Infinitive, Past, SingThrd, PresPart, V, Type)}.

verbphrase_2 (*(head(futperf (root (Infinitive))) ,mods (Advl, Adv2)), Number, Person,

Type) -- >
[will],
adverb-phrase (Advi),
[have],
adverb-phrase (Adv2),
[V]9 {averb (Infinitive, Past, SingThrd, PresPart, V, Type)).

71

Appendix D

D.10 Tenses for the Verb To Be

% verbs of "being"

sonse-.verb..phrase (Vphr ,Number, Person) --

be-.verb.phrase (Vphr,Number ,Person).

be..verb-.phrase (Vphr,Number,Person) - ->

be-.verb-.phrase-.2 (Vphr ,Number ,Person).

be-.vrb-.phrase(vp(Adv,Vphr) ,Number,Person)--

adverb-.phrase Cldv),

be..verb-.phrase.2(Vphr ,Number ,Person)

% t e n s e: past simple

be-.verb-.phrase-.2 (head(past (root (be))), Number, Person)--

(V], {beverb (V, Number, Person, past)),!.

% t e n s e: past perfect

be-.verb-.phrase-.2 Chead~pastperf(root(be))), Number, Person)->

Chad], [been).

be-.verb-.phrase-.2 (* (head(pastperf (root (be))) ,mods(Adv)), Number, Person)->
[had],
adverb-.phrase CIdv),
[been).

% t e n s e: present simple

be-.verb-.phrase-.2 (head(present~root~be))), Number, Person)->

[V], {beverb (V, Number, Persca, present)},K.

%. t e n s e: future simple

be-.verb-.phrase-.2 (head(future(root(be))), Number, Person)--

[will], [be).

be..verb-.phrase-.2 (*(head(future(root(be))),mods(Adv)), Number, Person)->

[Will],
adverb-.phraso (Adv),

72

Appendix D

[be].

% t S nl s 9: present perfect

b...verb-.phrase-.2 (head(presperf(root(be))), Number, Person) -

{not (sing-.third (Number,Person)),
[have), [been).

be-.verb-.phrase-.2 (*(head(presperf(root~be))) ,mods(Adv)), Number, Person)->

{not(sing-.third(Numlber,Person))1.
(have),
adverb-.phrase (Adv),
[been).

be-.verb-.phrase.2 (head(presperf(root(be))), singular, third)--

(has],. [been).

be-.verb-.phrase-.2 (*(head(presperf(root (be))) ,mods(kdv)), singular, third)--

[has],
adverb-.phrase (Idv),
[been).

%/ t e ni s *: future perfect

be..verb-.phrase.2 (head(furperf(root(be))), Number, Person)->

(Vill], [have), [been).

be-.verb.phrase..2 (*(head(past(root(be))) ,mods(Adv)), Number, Person)--

[Viii),
adverb.phrase (Av),
[have)], [been].

be-.verb-.phrase..2 Ce(head(past(root(be))),mods(Adv)), Number, Person)->

[Viii),
[have],

adverb-.phrase(Adv),
[been).

be..verb..phrase-.2 (*(head~past(root(be))),mods(Advi,Adv2)), Number, Person)->

[Vill],
adverb..phrase(Advl),
[have),
adverb..phrase(kdv2),
[been).

73

Appendix D

D.11 Terminal Rules

% - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - -
% terminal rules

noun (comn(N), Number) -- >
[NJ, {iscommonnoun(N, Number)}.

determiner (det(Det), Number) -->
[Dot]) {is-determiner(Det, Number)}.

adjective (adj(Adj)) -->
[Adj], {is-adjective(Adj)}.

adjective (adj(Possadj)) -->
[Possadj], {poss-adj(PossAdj)}.

adverb (adv(Adv)) -->

tidy), {isadverb(Adv)}.

preposition (prep(Prp)) -->
[Prp], {is-preposition(Prp)}.

pronoun (pron(P), Number, Person, Case) -- >

EP], {is-pronoun(P, Number, Person, Case)}.

relative-pronoun (rpron(P), Number, Person, Case) -- >

EPJ, {isrel-pronoun(P, Number, Person, Case)}.

subordconj (subconj(Conj)) -->
£Conj], {is-subconj(Conj)}.

auxiliary (aux(Auxv)) -->
[kuxv], {auxmodal(Auxv)}.

74

Appendix D

D.12 Lexical Entries

St--

7.7 the dictionary
% --

% ---
% determiners
% --

is.determiner(the, Sorp).
is-determiner(a, singular).
is -determiner(an, singular).
is-determiner(that, singular).
is-determiner(this, singular).
is-determiner(these, plural).
is-determiner(those, plural).
is-determiner(all, plural).
is-determiner(some, plural).
is-determiner(many, plural).
is-determiner(most, plural).
is-determiner(few, plural).
is-determiner(no, plural).
isdeterminer(every, singular).
is_determiner(any, Sorp).

% the verb to be; copula
%.......

beverb(am, singular, first, present).
beverb(are, singular, second, present).
beverb(is, singular, third, present).
beverb(was, singular, first, past).
beverb(vere, singular, second, past).
beverb(was, singular, third, past).

beverb(are, plural, Person, present).
beverb(were, plural, Person, past).

-- ---------------------------
% other verbs
%--

75

Appendix D

avorb(want,wanted,wans,wanting,wanted,transitive).
averb(go,wentgoes,going,gone,intransitive).

averb(know,knew,knows,knowing,known,transitive).
averb(like~likedlikes,liking,likedtransitive).
averb(cross,crossed,crosses,crossing,crossed,transitive).
averb(beckon,beckoned,beckons,beckoning,beckoned,transitive).
averb(give, gave, gives, giving, given, bitransitive).

averb(find, found, finds, finding, found, bitransitive).

averb(find, found, finds, finding, found, transitive).

averb(see, saw, sees, seeing, seen, transitive).

averb(eat, ate, eats, eating, eaten, transitive).
averb(eat, ate, eats, eating, eaten, intransitive).
averb(do, did, does, doing, done, transitive).
averb(do, did, does, doing, done, bitransitive).
averb(insist, insisted, insists, insisting, insisted, transitive).
averb(worry, worried, worries, worrying, worried, transitive).
averb(think, thought, thinks, thinking, thought, intransitive).
averb(die,died,dies,dying,died,intransitive).
averb(have,had,has,having,had,transitive).
averb(need, needed, needs, needing, needed, transitive).
averb(work, worked, works, working, worked, intransitive).
averb(teach, taught, teaches, teaching, taught, bitransitive).
averb(learn, learned, learns, learning, learned, transitive).
averb(speak, spoke, speaks, speaking, spoken, transitive).
averb(love, loved, loves, loving, loved, transitive).
averb(move, moved, moves, moving, moved, intransitive).
averb(duplicate, duplicated, duplicates, duplicating, duplicated, transitive).
averb(take, took, takes, taking, taken, tansitive).
averb(wait, waited, waits, waiting, waited, intransitive).
averb(get, got, gets, getting, gotten, transitive).
averb(say, said, says, saying, said, transitive).
averb(break, broke, breaks, breaking, broken, transitive).
averb(lose, lost, loses, losing, lost, transitive).
averb(continue, continued, continues, continuing, continued, transitive).
averb(let, let, lets, letting, let, transitive).
averb(fill, filled, fills, filling, filled, transitive).

%---
% conjunction
%--

conjunction (and).
conjunction (or).

76

Appendix D

% modal auxiliaries
au..... . ma..

auxmodal (may).
auxmodal (might).
auxmodal (could).
auzmodal (can~).
auxmodal (would).

t adjectives

isadjective(angry).
isadjective(black).
isadjective(green).
is-adjective(red).
isadjective(blue).
is-adjective(white).
isadjective(large).
is-adjective(active).
is-adjective(nibbled).
isadjective(good).
isadjective(alive).
is-adjective(orange).
is-adjective(early).
is-adjective(government).
is-adjective(detense).
is-adjective(frightened).
isadjective(obvious).
is-adjective(hungry).
isadjective(frightening).
is-adjective(intimidating).
is-adjective(artificial).
is-adjective(no).
is-adjective(easier).

%t- - ---
% adverbs

is-adverb (quickly).
isadverb(shortly).
is-adverb(now).

77

Appendix D

is-.adverb(exactly).

is-.adverb (hard).
is-.adverb (hungrily).

is-.adverb (there).

is-.adverb (not).
is-.adverb (much).
is-.adverb(easy).
is...vverb(slowly).
is.adverb(here).
is-.adverb(gone).

% --
7. proper nouns
oft---

proper..noun(mary).

proper-.noun(zeno).
proper-.noun(john).

proper..noun(socrates).
proper-.noun(english).
proper-.noun(franc.).
proper-.noun(athens).
proper-.noun(routel).

proper.noun(times-.square).

%ft---
%nouns

% t---

% count nouns

is.comonnoun(orcenguazr)
is-.common-.noun(forces ,plural).

is-.common-.noun(convoy, singular).

is..common-.noun(convoys ,plural).
is-common..noun(lake ,singular).

is-.common-.noun(lakes ,plural).

is-common-.noun(hill~singular).
is..common..noun(hills ,plural).

is..comon-.noun(avenuo, singular).

is..coimon..noun(avenues ,plural).
is-mm ..u.singch~iular).

is..common..noun(approaches ,plural).

is..comon.noun (area, singular) .
is..comon-.noun(areas ,plural).

78

Appendix D

is..comon.noun(book ,singular).
is..common-.noun(books ,plural).
is.comon.noun(garden,ali)
is..common-.noun(gardens ,plural).
is-.common-.noun(car, singular).
is-.common..noun(cars, plural).
is..common..noun(truck, singular).
is-.common.noun(trucks, plural).
is..common-noun(room, singular).
is-.common-.noun(rooms ,plural).
is..common..noun(field, singular).
is..comman-noun(fields ,plural).
is..common-.noun (river~snua)
is-.common.noun(rivers ,plural).
is..common..noun(road~s jugular).
is..common-.noun(roads ,plural).
is-.common-.noun(bridgo ,singular).
is..common..noin(bridges plural).
is-.common-.noun(woman, singular).
is-.common-.noun(women ,plural)'.
is-.common-.noun~pizza, singular).
is-.common-.noun(pizzas, plural).
is-.common-.noun(stallions, plural).
is..common-.noun(stallion, singular).
is-.conuon-.noun(men, plural).
is..common-.noun(man, singular).
is-.common-.noun~life, singular).
is-.comon.noun(lives, plural).
is-.common-.noun(agency, singular).
is..common-.noun(agencies ,plural).
is-.common-.noun(cucum'ber, singular).
is-.common-.noun(cucumbers ,plural).
is-.common.noun(carrot, singular).
is..common-.noun~carrots ,plural).
is..common-..oun(orange, singular).
iB..common-.noun(oranges, plural).
is..common-.noun(apple,snua)
is-.common-.noun(apples ,plural).
is-.common.noun(cape ,singular).
is-common-.noun(cape. plural).
is..common-.noun(rabbit, singular).
is..common..noun(rabbits, plural).
is..common-.noun(saw, singular).
is-.common-.nounC saws, plural).
is-cmmn-n unoenmet, singular).

79

Appendix D

is. commonnoun(governments, plural).
is-commonnoun(computer, singular).
iscommonnoun(computers, plural).
iscommonnoun(intelligence, singular).
is-common.noun(enemy, singular).
is-common.nnoun(enemies, plural).
is_common_noun(element, singular).
is-common-noun(elements, plural).
iscommon-noun(line, singular).
is-common.noun(lines, plural).
is-common-noun(location, singular).
is-common-noun(locations, plural).
is-common-noun(conversation, singular).
is-common-noun(conversations, plural).
is-commonnoun(time, singular).
is_commonnoun(times, plural).
is-common-noun(end, singular).
iscommonnoun(ends, plural).
is-commonnoun(beginning, singular).
is_commonnoun(beginnings, plural).
is-common-noun(hour, singular).
is.commonnoun(hours, plural).
is-common-noun(minute, singular).
is-common-noun(minutes, plural).

mass nouns

is.commonnoun(ground, mass).
is-commonnoun(water, mass).
is-common-noun(fruit, mass).

. possessive adjectives
..

poss.adj(our).
poss-adj(your).
poss.adj(my).
poss-adj(his).
poss.adj(her).
poss.adj(their).
pras-adj(its).

% pronouns

80

Appendix D

--

ispronou(everyone, singular, third, Case).
is.pronoun(nothing, singular, third, Case)
is-pronoun(i, singular, first, nominative).
is-pronoun(you,Number ,second , nominative).
is-pronoun(he, singular, third, nominative).
ispronoun(she, singular, third, nominative).
is.pronoun(it, singular, third, Case).
is.pronoun(we, plural, first, nominative).
is-pronoun(they, plural, third, nominative).
ispronoun(me, singular, first, objective).
is-pronoun(you, Number, second, objective).
ispronoun(him, singular, third, objective).
is.pronoun(her, singular, third, objective).
ispronoun(us, plural, first, objective).
is.pronoun(them, plural, third, objective).
is.pronoun(mine, singular, first, possessive).
is-pronoun(yours, Number, second, possessive).
is-pronoun(his, singular, third, possessive).
is-pronoun(hers, singular, third, possessive).
is.pronoun(its, singular, third, possessive).
is-pronoun(ours, plural, first, possessive).
is-pronoun(theirs, plural, third, possessive).
is.pronoun(who, Number, Person, nominative).
is.pronoun(whose, Number, Person, possessive).
is.pronoun(whom, Number, Person, objective).

is-rel-pronoun(who, Number, third, nominative).
is-rel-pronoun(whom, Numbir, third, objective).
is-rel-pronoun(whose, Number, Person, possessive).
is-rel-pronoun(what, Number, third, Case).
is_rel-pron.un(hatever, Number, third, Case).
is_rel-pronoun(that, Number, third, objective).
is-rel-pronoun(which, Number, third, Case).
is-rel-pronoun(where, singular, third, Case).

% ---
% prepositions
% ---

is..preposition(in).
is-preposition(vith).
ispreposition(to).

81

Appendix D

is.preposition(for).

ispreposition(by).
is.preposition(of).
ispreposition(on).
is.preposition(from).
ispreposition(during).
is.preposition(before).
ispreposition(after).
is-preposition(at).
ispreposition(near).
ispreposition(along).
is.preposition(beside).
si-preposition(around).

7 subordinating conjunctions: begin adverb phrases

% ---

issubconj (after).
is_subconj (before).

issubconj (when).

is.subconj (while).
is-subconj (because).
is_subconj (although).

is.subconj (if).

is.subconj (unless).

is.subconj (where).

82

DISTRIBUTION

ADMINISTRATOR COMMANDING OFFICER
DEFENSE TECHNICAL INFORMATION CENTER US ARMY FOREIGN SCIENCE
ATTN DTIC-DDA (12 COPIES) & TECHNOLOGY CENTER
CAMERON STATION, BUILDING 5 FEDERAL OFFICE BLDG
ALEXANDRIA, VA 22304-6145 ATTN AMXST-SC, SCIENCES DIV

220 7TH STREET, NE
US ARMY ELECTRONICS TECHNOLOGY CHARLOTTESVILLE, VA 22901

& DEVICES LABORATORY
ATTN SLCET-DD COMMANDER
FT MONMOUTH, NJ 07703 US ARMY TRAINING & DOCTRINE

COMMAND
DIRECTOR ATTN ATCD-AN, COMBAT SYS BR
US ARMY MATERIEL SYSTEMS ANALYSIS FT MONROE, VA 23651

ACTIVITY
ATTN AMXSY-MP US ARMY LABORATORY COMMAND
ABERDEEN PROVING GROUND, MD 21005 ATIN TECHNICAL DIRECTOR, AMSLC-TD

COMMANDER INSTALLATION SUPPORT ACTIVITY
US ARMY MISSILE & MUNITIONS ATTN LEGAL OFFICE, SLCIS-CC

CENTER & SCHOOL ATTN S. ELBAUM, SLCIS-CC-IP (5 COPIES)

ATTN ATSK-CTD-F
REDSTONE ARSENAL, AL 35809 USAISA

ATTN RECORD COPY, ASNC-LAB-TS

DOD ATTN TECHNICAL REPORTS BRANCH,
PM CBILE ELECTRIC POWER ASNC-LAB-TR (2 COPIES)
ATTN AMC-PM-MEP-T
7500 BACKLICK ROAD HARRY DIAMOND LABORATORIES
BUIDING 2089 ATTN D/DIVISION DIRECTORS
SPRINGFIELD, VA 22150-3107 ATTN SLCSM/TD

ATTN LIBRARY, SLCIS-TL (3 COPIES)

HQ, USAF/SAMI ATTN LIBRARY, SLCIS-TL (WOODBRIDGE)
WASHINGTON, DC 20330 ATTN CHIEF, SLCHD-NW-E

ATTN CHIEF, SLCHD-NW-EH
COMMANDER ATTN CHIEF, SLCHD-NW-EP
US ARMY ENGINEER SCHOOL ATTN CHIEF, SLCHD-NW-ES
ATTN ATZA-TSM-G ATTN CHIEF, SLCHD-NW-R
FT BELVOIR, VA 22060-5249 ATTN CHIEF, SLCHD--NW-CS

ATTN CHIEF, SLCHD-NW-RP

NATIONAL COMMUNCATIONS SYSTEMS ATTN CHIEF, SLCHD-NW-RS
OFFICE OF THE MANAGER ATTN CHIEF, SLCHD-NW-TN
ATTN LIBRARY ATTN CHIEF, SLCHD-NW-TS
WASHINGTON, DC 20305 ATTN CHIEF, SLCHD-NW-P

ATTN CHIEF, SLCHD-TA

DIRECTOR ATTN B. B. LUU, SLCHD-NW-EP
DEFENSE COMMUNICATIONS AGENCY ATTN J. SATTLER, SLCHD-NW-CS

ATTN TECH LIBRARY ATTN L. COX, SLCHD-PO-P
ATTN COMMAND & CONTROL CENTER ATTN P. EMMERMAN, SLCHD-TA-AS
WASHINGTON, DC 20305 ATTN D. GOUGHNOUR, SLCHD-TA-AS

ATTN R. GOODMAN, SLCHD-TA-ES

DIRECTOR ATTN M. S. BINSEEL, SLCHD-TT
APPLIED TECHNOLOGY LABORATORY ATTN J. GURNEY, SLCHD-TA-AS (10 COPIES)

AVRADCOM
ATTN DAVDL-ATL-TSD, TECH LIBRARY

FT EUSTIS, VA 23604

DEPARTMENT OF THE ARMY
CONCEPT ANALYSIS AGENCY
8120 WOODMONT AVE
BETHESDA, MD 20014

83

